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Abstract 
The conjugate gradient method is welcome method for solving optimization problems due to its 

simplicity and low storage. In this paper, we propose a kind of conjugate gradient method. The presented 
method possesses the sufficient descent property under the strong Wolfe line search. Under mild 
conditions, we prove that the method with strong Wolfe line search is globally convergent even if the 
objective function is nonconvex. At the end of this paper, we also present numerical experiments to show 
the efficiency of the proposed method. 
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1. Introduction 

Optimization is an important tool in many areas[1-3], such as engineering, production 
management, economy etc.. In this paper, we are interested to consider the following 
unconstrained optimization problem  

min ( )f x ，                                                                                                                   (1) 

where : nf R R is continuously differentiable and its gradient ( ) ( )g x f x  is available.The 

conjugate gradient method is a powerful line search method for solving (1) because of its 
simplicity and its very low memory requirement, especially for the large scale optimization 
problems. The following iterative formula is often used by the nonlinear conjugate gradient 
method  

1 ,k k k kx x d                                                                                                    (2) 
 

where k is a steplength and kd  is a search direction  defined  by 
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                                                                                        (3) 

where ( )k kg g x , k  is a scalar which determines the different conjugate gradient methods. 

Well-known conjugate gradient methods are the Fletcher-Reeves method, Polak-Ribiere-Polyak 
method, Conjugate –Descent method  and Dai-Yuan method etc.. 

The convergence behavior of the different conjugate gradient methods with some line 
search conditions has been widely studied, including Armijo [4], Al-baali [5], Dai [6] and Zhang 
[7-8] etc.. There are many convergence results of the conjugate gradient methods [6-11]. The 
sufficient descent condition  

,,|||| 2 kgcdg kkk 

 
where 0c   is a constant, is crucial to insure the global convergence of the conjugate gradient 
methods.  

In the next section, the algorithm and its property are stated. In section 3, the global 
convergence of the new method is proved. In section 4, we report some numerical results to test 
the proposed method. 
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2. Algorithm  
Now we describe our algorithm as follows. 

Algorithm 1： 

Step 1. Given 1 , 0,nx R   0 1    , Let 1 1d g  , : 1k  ； 

Step 2.  If kg  , then stop, otherwise go to Step 3； 

Step 3. Computer kd by (3), where k defined by 
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                                                                                 (4) 

where  0, , ( , )      ；   

Step 4. Determined k by strong Wolfe line search satisfying  

,)()( k
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                                                                            (5) 
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                                                                                    (6) 
where 0 1    ; 

Step 5. Let 1k k k kx x d   ; 

Step 6. Set : 1k k  , and go to Step 2. 

Theorem 1  Suppose the sequences  kx  and  kd  are generated by the Algorithm 1, 

then  

2
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                                                                                                (7) 

Proof  (1) If 1k  , 1 1d g  , 
2

1 1 1
Tg d g  . It is obviously that (7) holds. 

(2) Assuming now that (7) is true for some 1k  , namely 

2
1 1 1|| || 0T

k k kg d g

     .                                                                                         (8)  

 We show that (7) continue to hold for k . 

Since 0   , we get from (4), (8) and  >0 that 0k  . By the definition of kd , we 

have from (6) and 0 1  that 
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This implies that kd  provides a descent direction of f at kx . 
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3. Global Convergence 
In this section, we prove the global convergence of Algorithm 1 under the following 

assumption. 
Assumption A 

(1)The level set  1| ( ) ( )nx R f x f x     is bound. 

(2)In some neighborhood N of , ( )f x is continuously differentiable and its gradient ( )g x is 

Lipschitz continuous, namely, there exists a constant 0L  such that 

( ) ( ) , , .g x g y L x y x y N      

In the latter part of the paper, we always suppose the conditions Assumption A hold. 

Lemma 1[12] Let  kx  be generated by (2) and (3),  kd satisfy 0k kg d   and k be 

determined by strong Wolfe line search. Then the Zoutendijk condition holds 
2
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Lemma 2  Let  kx be generated by Algorithm 1, then 
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Proof (1) If 1k  , 1 1d g   ,
2

1 1 1
Tg d g  . It is obviously that (10) holds. 

(2) Assuming that (10) is true for some 1k  , namely  
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We show that (10) continue to hold for k . By the definition of kd , we have from (6) , (11) 

and  >0 that 
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Repeating the process, we have 
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Theorem 2 Let  kx be generated by Algorithm 1 and
1
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Proof  We have from (10) and
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This together with (6), we obtain  
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.                                                                             (14)  

By the definition of k , we get from (7) and 0   that 
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Thus, using (14), we have 

2

1 1 1

2
2

1
T

k k k kg d g

   


.                                                                                    (16) 

By the definition of kd , we have from (15) , (16) that  
2 2 22

1 1 1 1 1( ) 2 T
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For the sake of contradiction, we suppose that the conclusion is not true. Then there 
exists a constant 0  such that                 

1kg k   .                                                                                                   (18) 

With (17), we get 

1 1kp p k   ,  
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. This contradicts Zoutendijk condition  (9). 

 
 
4. Numerical Experiments  

In this section, we report some results of the numerical experiments. We test Algorithm 
1 and compare its performance with those of PRP method whose results be given by [13]. 

AL1SWP: Algorithm 1 with SWP line search, where 0.2  , , 0.5  , 1 0.01   and 

2 0.1  . 

PRPSWP[13]: The PRP formula with SWP line search, where 1 0.01  and 2 0.1  . 

The termination condition is 5|| || 10kg  or the iteration number exceeds 42 10 or the 

function evaluation number exceeds 53 10 . 
 In the following tables, the numerical results are written in the form NI/NF/NG, where 

NI, NF, NG denote the number of iteration, function and gradient evaluations respectively. Dim 
denotes the dimension of the test problems.  

From the numerical results, we can see that the proposed method performs better than 
the PRP method for some problems. 
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Table 1. Numerical Results 

Problem Dim 
AL1SWP PRPSWP 

NI/NF/NG NI/NF/NG 

rose 2 42/156/52 29/502/65 

froth 2 18/49/22 12/30/20 

jensam 2 11/33/17 -/-/- 

helix 3 45/155/55 49/255/83 

bard 3 27/130/31 23/98/37 

gulf 3 1/2/2 1/2/2/ 

box 3 28/91/39 -/-/- 

wood 4 197/308/222 337/2125/599 

kowosb 4 36/138/37 62/361/105 

bd 4 138/597/207 -/-/- 

osb1 5 28/44/34 1/51/2 

biggs 6 142/247/159 121/495/197 

osb2 11 338/612/424 293/1372/480 

watson 20 561/762/565 990/2773/1567 

rosex 50 37/53/53 31/533/76 

pen2 50 102/239/136 906/4057/1585 

vardim 50 9/271/179 10/52/36 

trig 100 38/241/71 46/342/87 

ie 500 5/8/6 6/13/8 

rrid 200 36/241/142 30/66/36 

band 50 16/117/70 18/183/24 

band 200 16/19/19 19/283/27 
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