
TELKOMNIKA, Vol. 11, No. 4, April 2013, pp. 2200 ~ 2208
ISSN: 2302-4046
 2200

Received January 14, 2013; Revised February 28, 2013; Accepted March 8, 2013

Securing Personal Health Records in Clouds by
Enforcing Sticky Policies

Chunxia Leng1,2, Huiqun Yu1,2*, Jingming Wang3, Jianhua Huang1
1Department of Computer Science and Engineering, East China University of Science and Technology,

Shanghai 200237, China, Telp/Fax: +86-021-64253546/64252984
2Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 201112, China,

Telp/Fax: +86-021-64251936/64253682
3School of Computer and Information Engineering, Chuzhou University, Anhui 239012, China,

Telp/Fax: +86-0550-3510481/3510045
*Corresponding author, e-mail: yhq@ecust.edu.cn

Abstract
The personal health records (PHR) always contain much health-related privacy information in

different categories. When storing the PHR data in the cloud, the PHR owner loses control to the sensitive
information and is confronted with potential privacy exposure. In this paper, we propose a scheme to
enable the protection of the PHR data hosted in the cloud. It not only supports that the data access can be
fine-grained and base on the privacy policies specified by the PHR owner, but also affords an effective
encryption mechanism and flexible key management approach to enforce the privacy policies sticky to the
PHR data.

Keywords: PHR, cloud, sticky policies, conditional proxy re-encryption, policy enforcement

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction
Online personal health records (PHR) service allows an individual to create, store,

manage, and share his personal health data in a centralized way, which is helpful for the PHR
owners to obtain health care services and monitor their health status. While cloud computing
becomes a promising computing paradigm in which everyone can enjoy the elastic storage and
the infinite computing resources, it is attractive for the PHR service providers to shift the PHR
data and applications into the cloud in order to lower their operational cost.

While the PHR cloud service provides many benefits for everyone, it brings data privacy
and security risks as well. The main concern is that the PHR data always contain much health-
related privacy information in different sensitive categories. For example, the first category is the
individual information including age, stature, weight, family, food statistics, contact information,
etc. Another category is the medical history including clinical records, family illness history,
laboratory test results, allergies, chronic diseases, imaging reports, immunization records, drug
reactions, etc. The third category is the health insurance information including insurance
company, amount, deadline, insurance agent, etc. When storing his PHR data in the cloud, the
PHR owner loses control to them and is confronted with potential privacy exposure.
Consequently it is prerequisite to provide security mechanisms based upon the PHR owner’s
privacy requirements in the cloud.

One commonly adopted solution to protect privacy information is encryption. Basically,
the PHR owner encrypts his PHR data by himself before uploading them to the cloud and stores
the ciphertexts in the cloud. Only those trusted by the PHR owner can be authorized to acquire
the decryption keys and then decrypt the ciphertexts. Contrarily, for the unauthorized parties
who do not have the corresponding decryption keys, the PHR data remains confidential. In this
case, encryption alone is not sufficient and it is required to enforce fine-grained access control
on these privacy data. Such control is based on agreed policies, which should be specified by
the PHR owner to meet his expectation of privacy data protection requirements, such as the
category of the PHR data, the role a user playing, the privileges to read or write, the purpose of
using the privacy data, the time and location conditions, obligations and so forth. Figure 1 shows
the privacy-aware access control policies [1] for different categories of the PHR data. For

TELKOMNIKA ISSN: 2302-4046

Securing Personal Health Records in Clouds by Enforcing Sticky Policies (Chunxia Leng)

2201

example, the PHR owner may allow that the doctors can write his medical history during
working period for medical treatment purpose, whereas allow that his insurance broker only can
read his insurance information for insurance claim purpose.

Figure 1. Privacy-aware Access Control Policies for PHR

To make sure that the privacy-aware access control policies he specified always be
enforced, the PHR owner can ‘stick’ these policies to his PHR data and then upload the data
associated with the sticky policies to the cloud. Unfortunately, the cloud server semi-trusted by
the PHR owner cannot be commissioned to strictly enforce the policies. Therefore, the trusted
third parties (namely, Trusted Authorities) should be selected by the PHR owner to provide
compliance checking whether the users who want to access the PHR data satisfy the
requirements specified in the sticky policies. As mentioned above, the PHR data can be divided
into different categories based on different sensitive level and can be specified different privacy
policies for every category. Therefore, selecting different trusted third parties to enforce relevant
policies can ensure that other categories of the PHR data cannot be illegitimately disclosed
even if a certain category are exposed.

On the other hand, realizing fine-grained access control under encryption essentially
can be transformed into a key management issue. It involves not only grant but also revoke
access privileges. To avoid from high key management complexity, an effective encryption
mechanism should be adopted. Thanks to C-PRE [2] mechanism, with it the read privilege and
write privilege can be distinguished easily. Moreover, granting access privileges to a user or
revoking access privileges from him can be subtly enforced.

In this paper, we propose a novel and practical scheme to enable the protection of the
PHR data hosted in the cloud. It not only supports that the data access can be fine-grained and
based on privacy policies specified by the PHR owner, but also affords an effective encryption
mechanism and flexible key management scheme.

The rest of the paper is organized as follows: In section 2 we briefly review selected
work related to ours. In section 3 we describe system model and system goals. In Section 4 we
present our proposed scheme in detail. Section 5 analyzes system security properties. We
conclude the paper in section 6.

2. Related Work
The sticky policies paradigm was originally proposed by Karjoth et al in [3]. When

submitting personal data to an enterprise, the privacy preferences can be specified by the user
and attach with personal data to make sure that the privacy preferences can always be
enforced. This paradigm provides very useful inspiration on how to protect sensitive personal
data. However, the platform suggested in [3] is rather weak in the sense that the enforcement
can not prevent the modification of personal data and the privacy policies because there have
no encryption mechanism adopted.

Pearson et al [4] describe a solution using sticky policy and IBE to manage privacy
personal data. In their solution, a sticky policy is mapped to an IBE encryption key which
describes the subject and the access condition. However, the key management is too complex.
In their latest work [5], they use PKI infrastructure to enforce sticky policies and deploy the
framework in the cloud. The solution also uses the trusted third parties to control the

PHR

Medical History Health Insurance infoIndividual info

Weight … Age Contact Info

Clinical Records …

Amount … Deadline

Lab Test Results

P1{Role=Doctor, Permission=Write, Purpose=Medical Treatment,
Time=<9:00AM, 5:00PM>}

P2{Role=Insurance Broker,
Permission=Read, Purpose=Insurance}

 ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 4, April 2013 : 2200 – 2208

2202

enforcement of the sticky policies. However, there has no consideration of the data categories
and the distinction of read and write privilege.

Conditional proxy re-encryption (C-PRE) is a cryptographic primitive derived from proxy
re-encryption (PRE) [6]. In a PRE scheme, a semi-trusted proxy is given a re-encryption key by
delegator and thus can convert a ciphertext encrypted under delegator’s public key into another
ciphertext that can be decrypted by delegatee’s private key without learning anything about the
plaintext. In a C-PRE Scheme, compared with traditional PRE, the delegator can categorize his
plaintexts into different portions and distribute the decryption right of each portion to different
delegatee through a proxy under the same key pair with respect to a certain condition.

There has been an increasing interest in using encryption mechanisms to secure
Personal Health Records recently. Li et al proposed a framework using MA-ABE and KP-ABE
mechanism to achieve fine-grained access control for securing PHR in cloud computing [7],
where selecting multiple attribute authorities to manage users and attributes. In [8], an attribute-
based infrastructure for EHR systems was proposed, where EHR files are encrypted using a
broadcast variant of CP-ABE that allows direct revocation. In [9], a scheme applying CP-ABE to
manage the sharing of PHRs was described. However, in CP-ABE and KP-ABE mechanisms, it
describes access policies with access structure, which is not fit to express the complex privacy-
aware access policies.

3. System Model and Goals
3.1. System Model

We assume a PHR system in the cloud consists of the following entities, as shown in
Figure 2.

Figure 2. The PHR System Model in the Cloud

Multiple PHR Owners: The PHR owners refer to the individual who wants to upload his
PHR data to the cloud after dividing them into different categories, encrypting them and sticking
the privacy-aware access control policies to them. Absolutely, the PHR owners can reselect a
new key to encrypt his PHR data or delete his PHR data when necessarily. He also can update
the privacy policies.

Cloud Server Provider (CSP): The PHR data can be organized by their categories and
stored in a central server belonging to the CSP. The CSP is semi-trusted by the PHR owners
who presume that CSP can storage the encrypted PHR data and faithfully follow the protocol in
general but may be interested in the privacy data and try to find out as much secret as possible.

Multiple Trusted Authorities (TAs): Similar to [7], we consider that there exists multiple
TAs in the PHR system. TAs are the independent entities fully trusted by the PHR owner and
provide compliance checking capabilities to enforce the sticky policies of the PHR data and
authorize the users to acquire the decryption key to read or write. Unlike [1], where TAs can
acquire the decryption key, we prohibit TAs from knowing about the decryption key of the PHR
data.

Multiple Users: The users may come from various domains such as the relatives, the
researchers, the caregivers, the insurance brokers etc. The users can be authorized to read or
write the PHR data based on the sticky policies.

IBM CompatibleCSP

TA for Medical History
TA for Insurance Info

TA for Individual Info

Researcher Caregiver

Encrypted Data
+ Decryption Key

PHR Owner

Insurance Broker

TELKOMNIKA ISSN: 2302-4046

Securing Personal Health Records in Clouds by Enforcing Sticky Policies (Chunxia Leng)

2203

3.2. System Goals
The design goals of our system are:
It is easier to meet the PHR owners’ requirements on the privacy data protection by

allowing the PHR owners specifying their own private-aware access control policies of the PHR
data and strictly enforcing the policies.

There is no need for a central policy repository because the policies are always sticky to
the data.

It prevents the CSP from knowing both the PHR data and the privacy policies
interrelated user’s access privilege. It keeps the decryption key confidential to TAs.

It supports to authorize different users to gain read-access or write-access to the PHR
data through enforcing fine-grained access control.

It should be efficient whenever the user’s access privileges are revoked or the keys are
updated.

4. Securing PHR by Using C-PRE to Enforce Sticky Policies

In this section, we firstly illustrate C-PRE encryption mechanism used in our scheme,
and then elaborate on how to achieve fine-grained access control by using C-PRE to enforce
sticky policies. Other several key design issues are also addressed in this section.

4.1. Preliminary-Conditional Proxy Re-Encryption

In our proposed system, C-PRE is used to achieve flexible access privilege granting
and revoking. C-PRE scheme is mainly composed of seven algorithms defined as follows:

Setup(1 The setup algorithm takes as input a security parameter 1�and determines
(q, G, GT, e), where q is a -bit prime, G and GT are two cyclic groups with prime order q, and e
is the bilinear pairing, e: G×G→GT. Then it chooses g∈R G, and five hash functions H1, H2, H3,
H4 and H5. H1:{0,1}*→Zq, H2:{0,1}*→G, H3:G→{0,1}n, H4:{0,1}*→G,H5:G→Zq, where n is
polynomial in and the message space is M = {0,1}n. The global parameter is:

param= ((q, G, GT, e), g, n, H1, H2, H3, H4, H5) (1)

KeyGen(1) The key generation algorithm takes a security parameter 1 as input and

then picks xi∈R Zq. It generations the public/private key pairs for user Ui as follows.

),x(g),sk(pk i
x

ii
i (2)

ReKeyGen(ski,w,pkj) The re-encryption key generation algorithm takes a private key

ski, a condition w, a public key pkj as input and randomly picks s∈R Zq, then outputs the re-
encryption key as follows.

),5

221
s
i

sk(pkHs

ji pk),w)pk(pk((H),rk(rkrk i
isks

j

j
w

i

 (3)

Where condition w can represent keyword, attribute and even any meaningful bit-string.

Enc2(pk,w,m) On input a public key pk, a condition w and a message m∈M, the
second encryption algorithm picks R∈R GT. Then it computes r = H1(m, R), and outputs the
ciphertext CT as follows. CT can be re-encrypted using the suitable re-encryption key.

),(),,,(3214324321

rrr),C,C(C(R),HH,mw))(pke(pk,H,RgCCCCCT (4)

Enc1(pk,m) On input a public key pk and a message m∈M, the first encryption

algorithm picks R∈R GT and s ∈R Zq
* . Then it computes r = H1(m, R), and outputs the ciphertext

CT as follows, which cannot be re-encrypted.

),gRH,mpkge,R(g)C,C,C,C(CT spkHsrr s

)(),(3
)(

14321
5 (5)

 ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 4, April 2013 : 2200 – 2208

2204

ReEnc(CTi, j
w

i
rk) This re-encryption algorithm takes the ciphertext

CTi=(C1,C2,C3,C4) and the re-encryption key

),rk(rkrk
j

w
i 21 as input. Firstly, it checks

whether the following equality holds:

)e(g,C)),C,C(C,He(C 432141 (6)

 If not, outputs ⊥; else outputs the ciphertext CTj as follows.

),rk),C,rke(C,C(C)C,C,C,C(CT j 2311214321 (7)

Dec(sk,CT) On input the private key sk and the ciphertext)C,C,C,C(CT 4321 , the

decryption algorithm firstly computes:

)C(Hsk
sk

)C,Ce(CR 45
412

 (8)

(R)HCm 33 (9)

Then it checks whether the following equality holds:

1
1 Cg (m,R)H (10)

If not, outputs ⊥; else outputs the plaintext m.

In C-PRE, the following two equations always hold:

Dec(Enc1 (pki, m), ski)=m (11)

Dec(ReEnc(Enc2(pki,m,w),ReKeyGen(ski,w,pkj)),skj)=m (12)

4.2. Privacy Policies Sticky to the PHR Data
In our scheme, it allows the PHR owner to specify the privacy-aware access control

policies which embody the PHR owner’s privacy requirements of access his PHR data. The
policy may be represented in any convenient format, such as an XML format, and may contain
some elements as the following:
1. Types of the PHR data, such as the individual information, the medical history, etc.
2. Purposes of using the data, such as for research, for medical treatment, etc.
3. Operations including read and write.
4. Roles allowed accessing the data.
5. Conditions that specify use of the data only within a given set of platforms with certain

period of time, a given network, or a subset of the enterprise.
6. Obligations that required the user to perform certain operations, such as deletion of data

after a certain time, notification the PHR owner, and so on.
Then the PHR owner should adopt the algorithm particularized in section 4.4 to strongly

binding these privacy policies to the PHR data they are associated with. By specifying and
enforcing sticky policies, it is easier for the PHR owner to control accesses to his sensitive PHR
data in cloud. In addition, sticky policies provide another means of data protect besides
encryption, since the PHR data which the privacy policies is sticky to cannot be accessed
unless these policies are complied with.

4.3. Read Privilege and Write Privilege

As proposed in [10], only encrypting the PHR data with a symmetric encryption key Kdata
can not distinguish the read privilege and write privilege. So the PHR owner should not only
choose a symmetric encryption key Kdata but also a pair of public/private key Kverify /Ksign. He
uses Kdata to encrypt his PHR data and then sign the ciphertext with the private key Ksign.

TELKOMNIKA ISSN: 2302-4046

Securing Personal Health Records in Clouds by Enforcing Sticky Policies (Chunxia Leng)

2205

The symmetric encryption key Kdata associated with the public key Kverify are assigned to
the reader. The reader can firstly verify the signature with Kverify and then decrypt the cyphertext
with Kdata.

The writer should acquire the private key Ksign besides Kdata and Kverify. After modifying
the PHR data, the writer should encrypt them again with Kdata and then sign with Ksign.

4.4. Creating Data Uploaded to CSP

In our scheme, we presume that every TA and every user has the public/private key
pairs generated by the key generation algorithm in C-PRE. TAi’s public key pkTAi has been
broadcasted to the PHD owners but the private key skTAi is kept safely by TAi. A user’s public
key pkuser has been broadcasted to all TAs but the private key skuser is kept safely too.

Before upload his PHR data to the cloud, the PHR owner firstly divides the data into
different categories and encrypt them. Then he specifies privacy-aware access control policies
for every category and selects different Trusted Authorities (TAs) to enforce relevant policies.
After strongly ‘sticking’ the policies to the data, the PHR owner finally uploads them to CSP and
then stays offline.

The following algorithm elaborates the process carried out by the PHR owner:
Step1. Randomly select a symmetric AES encryption key Kdata and a pair of RSA

public/private key Kverify /Ksign.

Step2. Classify the PHR data into different categories, i.e. {<t1, D1 >, <t2, D2 >, ..., <tn,
Dn > }, where ti is the string represents the categories, such as “IndividualInfo”, “MedicalHistory”,
“InsuranceInfo”, etc. Di is the subset of the PHR data in ti category.

Step3. For every Di in ti category:
(a). Encrypt Di with Kdata by using AES and then sign with Ksign by using RSA to get the

ciphertext Ci.

Ci=E RSA(Ksign, EAES (Kdata , Di)) (13)

(b). Select a TAi to authorize the users who want to access Di。
(c). By using the second encryption algorithm in C-PRE scheme, encrypt Kdata and Kverify

with selected TAi’s public key pkTAi to denote the read privilege Ri.

Ri=Enc2(pkTAi, 'r'||ti , Kdata||Kverify) (14)

Where, 'r'||ti means connecting the string 'r' with ti, such as “rMedicalHistory”, and it is the input
parameter of C-PRE to represent condition w.

(d). By using the second encryption algorithm in C-PRE scheme, encrypt Kdata, Kverify
and Ksign with with selected TA’s public key pkTAi to denote the write privilege Wi.

Wi=Enc2(pkTAi, 'w'||ti, Kdata || Kverify || Ksign) (15)

Where, 'w'||ti means connecting the string 'w' and ti, such as “wIndividualInfo”, and it is the input
parameter of C-PRE to represent condition w.

(e). Specify the privacy-aware access control policy Policyi for Di.
(f). Encrypt Policyi and ti with TAi’s public key pkTAi by using the first encryption

algorithm in C-PRE scheme and get Pi.

Pi= Enc1(pkTAi, Policyi || ti)) (16)

(g). Upload the following data to CSP.

{ ti || TAi || Ci || Ri || Wi || Pi } (17)

4.5. Enforcement of Access Control
When a user requests for read or write access privileges of ti category PHR data in the

cloud server, CSP and TA perform the protocol as the following steps shown.

 ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 4, April 2013 : 2200 – 2208

2206

Step1. CSP searches for the related data according to ti and get { ti||TAi ||Ci ||Ri ||Wi ||Pi}.
Then CSP sends the user’s request and Pi to TAi.

Step2. TAi decrypts Pi with it’s own private key skTAi by using the decryption algorithm in
C-PRE scheme. According to equation (11), TAi can obtain the privacy policy Policyi and the
category ti.

Policyi || ti = Dec(skTAi, Pi)) (18)

Step3. TAi carries out policy checking whether the user satisfy the access requirements

defined in the privacy policy Policyi and then decides whether the user can be authorized to
read or write ti category PHR data.

Step4. TAi generates the re-encryption key and send it to CSP. If the use is not allowed
to access ti category PHR data, TAi will send nothing to CSP. If the user can be granted the
read privilege, TAi will execute the re-encryption key generation algorithm in C-PRE scheme
with the input parameter: TAi’s private key skTAi, condition 'r'||ti and the user’s public key pkuser to
generate the re-encryption key as shown in formula (19). If the user can be granted the write
privilege, TAi will generate the re-encryption key with the input parameter skTAi, 'w'||ti and pkuser,
as formula (20) shown.

),pk,'r'||t(skrk useriTAiuseri'r'||t

iTA
ReKeyGen

 (19)

),||'',ReKeyGen||'' useriTA pktw(skrk

iuseritw
iTA

 (20)

Step5. By using the received re-encryption key from TAi as input parameter, CSP

executes the re-encryption algorithm in C-PRE scheme to re-encrypt Ri and Wi and obtains R'i
and W'i. If the received re-encryption key is

useritr
iTA

rk
 ||'' , the re-encryption result will be:

)),(ReEnc),,(ReEnc(),(||''||''

''
iiii WrkRrkWR

useritr
iTAuseritr

iTA
 (21)

Undoubtedly, R'i is valid but W'i is invalid in formula (21). It means that the user can only decrypt
R'i with his privacy key skuser correctly but cannot decrypt W'i with skuser. In this way, the user is
granted read privilege.

If the received re-encryption key is
useritw

iTA
rk

 ||'' , the re-encryption result will be:

)),(ReEnc),,(ReEnc(),(||''||''

''
iiii WrkRrkWR

useritw
iTAuseritw

iTA
 (22)

Similarly, W'i is valid but R'i is invalid in formula (22). That means, the user is granted write
privilege.

Step6. CSP sends {Ci || R'i || W'i} to the user.
Step7. The user firstly executes the decryption algorithm in C-PRE scheme to decrypt

R'i and W'i with his private key skuser. As described above, if the user is granted read privilege,
he only can decrypt R'i correctly and gain Kdata||Kverify, as shown in formula (23).

Kdata||Kverify= Dec(skuser, Ri

’)) (23)

If the user is granted write privilege, he can decrypt W'i correctly and gain Kdata||Kverify||Ksign, as
shown in formula (24).

Kdata||Kverify||Ksign = Dec(skuser, Wi
’)) (24)

For the reader, he firstly uses Kverify to verify the sign of Ci, and then decrypts with Kdata to get Di.
For the writer, after modifying the PHR data, he can encrypt them again with Kdata and then sign
with Ksign.

TELKOMNIKA ISSN: 2302-4046

Securing Personal Health Records in Clouds by Enforcing Sticky Policies (Chunxia Leng)

2207

4.6. User Revocation
When the PHR owner’s privacy requirements have changed to revoke the privileges on

a certain category data from some users, such as revocation the write privilege on medical
history from the nurse role, the PHR owner needs to update the privacy policy Policyi.
Furthermore, in order to avoid that the revoked users collude with CSP to violate the privacy
policies and can read or write the data with the former keys Kdata and Kverify/Ksign, the PHR owner
can select the new keys K'data and K'verify/K'sign to encrypt data.

When carrying out policy checking, TA will decide whether the user can be authorized
to read or write the PHR data according to the updated policy.

4.7. Key Updating

There are four key updating problems in our scheme to discuss:
1. Updating the user’s key: If the user’s private key skuser is expired or compromised, he

only needs to broadcast his new public key pk'
user

 to TAs. In this case, the PHR owner should do
nothing, and TA simply generates a new re-encryption key with pk’

user and send it to CSP.
2. Updating re-encryption key: If a re-encryption key is compromised, such as

useritw
iTA

rk
 ||'' , other categories except ti category data will not be affected because of the

condition 'w'||ti. To revoke the compromised re-encryption key, the PHR owner needs to create
a new category ti

’ and redefines Ri, Wi and Pi. TA generates the new re-encryption key

useritw
iTA

rk

'||''
.

3. Updating TA’s key: If a TA’s private key skTA is compromised, TA needs to broadcast
the new public key pk’

TA
 to the PHR owner. Then the PHR owner recomputes Ri, Wi and Pi.

4. Updating Kdata, Kverify and Ksign: If the symmetric encryption key Kdata and the
public/private key Kverify /Ksign are compromised, the PHR owner have to select the new keys
K'data and K'verify/K'sign. Then he recomputes Ci, Ri, Wi and Pi.

5. System Analysis
In this section, we will analyze security properties of our proposed scheme.

5.1. Fine-grainedness of Access Control
It adopts the sticky policies paradigm to achieve fine-grained access control in our

proposed scheme. The PHR owner is able to specify the privacy-aware access control policies
which embody his privacy requirements of access his PHR data. Moreover, the PHR owner can
recommend the trusted third parties to enforce fine-grained access control according to the
sticky policies. By using C-PRE mechanism, it is easy to distinguish read privilege and write
privilege.

5.2. Privacy Policies Confidentiality

Before uploading the privacy policy Policyi to CSP, the PHR owner encrypts it with
selected TA’s public key pkTAi. Therefore, it is impossible for CSP to know about the privacy-
aware access control policies and thus derive the user’s access privileges.

5.3. Data Confidentiality

In our scheme, the PHR data uploaded to CSP are encrypted with a symmetric AES
encryption key Kdata and then Kdata is encrypted with TA’s public key pkTAi. So the PHR data is
secret for CSP. When the user requires accessing the PHR data, CSP only transfers the privacy
policies to TA. By this means, TA can not know anything about the PHR data or Kdata. After the
re-encryption key is generated by TA and the re-encryption algorithm is processed by CSP, Kdata
is encrypted with the user’s public key pkuser. Only possessing the private key skuser can decrypt
Kdata and thus decrypt the PHR data.

6. Conclusions
The scheme proposed in this paper achieves securing the personal health records in

the cloud. Before uploading their PHR data to the cloud, the PHR owner can define the privacy-

 ISSN: 2302-4046

TELKOMNIKA Vol. 11, No. 4, April 2013 : 2200 – 2208

2208

aware access control policies and strongly bind them with associated data by using C-PRE
encryption mechanisms. TAs provide compliance checking capabilities to enforce the sticky
policies on the PHR data and then authorize the users to acquire the decryption key to read or
write. In this way, it not only supports fine-grained access control based on the PHR owner’s
privacy preferences, but also prevents the CSP from learning both the PHR data and the
privacy policies. Through implementation and simulation, it shows that the scheme is both
efficient and scalable.

Acknowledgement
The work was supported by the NSF of China under grants No. 60773094, 60473055

and 61173048, Shanghai Shuguang Program under grant No. 07SG32.

References
[1] Ni Q, Trombetta A, Bertino E, Lobo J. Privcy-Aware Role Based Access Control. Proceedings of the

12th ACM Symposium on Access Control Models and Technologies. New York. 2007: 41–50.
[2] Weng J, Yang J, Tang Q, Deng RH, Bao F. Efficient Conditional Proxy Re-Encryption with Chosen-

Ciphertext Security. Proceedings of the 12th International Conference on Information Security.
Sydney. 2009: 151–166.

[3] Karjoth G, Schunter M, Waidner M. Platform for Enterprise Privacy Practices: Privacy-Enables
Management of Customer Data. Proceedings of the 2nd Workshop on Privacy Enhancing
Technologies. San Francisco. 2002; 2482: 69–84.

[4] Pearson S, Mont MC, Chen LQ, Reed A. End-to-End Policy-Based Encryption and Management of
Data in the Cloud. Proceedings of the 3rd IEEE International Conference on Cloud Computing
Technology and Science. Athens. 2011: 764-771.

[5] Mont MC, Pearson S, Bramhall P. Towards Accountable Management of Identity and Privacy: Sticky
Policies and Enforceable Tracing Services. Proceedings of 14th International Workshop on Database
and Expert Systems Applications. Washington. 2003: 377-382.

[6] Blaze M, Bleumer G, Strauss M. Divertible Protocols and Atomic Proxy Cryptography. International
Conference on the Theory and Application of Cryptographic Techniques. Espoo. 1998: 127–144.

[7] Li M, Yu SC, Ren K, Lou WJ. Securing Personal Health Records in Cloud Computing: Patient-Centric
and Fine-Grained Data Access Control in Multi-Owner Settings. Proceedings of 6th Iternational ICST
Conference, SecureComm. Singapore. 2010: 89–106.

[8] Narayan S, Gagne M, Safavi-Naini R. Privacy Preserving EHR System using Attribute-Based
Infrastructure. Proceedings of the 2nd ACM Cloud Computing Security Workshop. Chicago. 2010: 47–
52.

[9] Ibraimi L, Asim M, Petkovic M. Secure Management of Personal Health Records by Applying
Attribute-Based Encryption. University of Twente. Technical Report. 2009.

[10] Kallahalla M, Riedel E, Swaminathan R, Wang Q, Fu K. Plutus: Scalable Secure File Sharing on
Untrusted Storage. Proceedings of the 2nd USENIX Conf on File and Storage Technologies.
Berkeley. 2003: 29-42.

