
TELKOMNIKA, Vol. 11, No. 7, July 2013, pp. 3618 ~ 3626
e-ISSN: 2087-278X
 3618

Received January 20, 2013; Revised April 5, 2013; Accepted April 15, 2013

Crawling Microblog by Common-Designed Software

Gang Lu*1, Shumei Liu1, Kevin Lü2
1Collage of Information Science and Technology, Beijing University of Chemical Technology

15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, China
2Brunel University, Uxbridge UB8 3PH, UK

Corresponding author, e-mail: sizheng@126.com, smliu@mail.buct.edu.cn, kevin.lu@brunel.ac.uk

Abstract
Amount of microblogs data is needed to be crawled for research, business analyzing, and so on.

However, a lot of dynamic Web techniques are used in microblog Web pages. That makes it hard to crawl
data by parsing the contents of Web pages for traditional Web page crawlers. Fortunately, microblogs
provide APIs. Well-structured data can be returned to users simply by accessing those APIs in form of
URLs. Basing on that mechanism, researchers have obtained some data from microblogs to research.
Nevertheless, no common software for crawling microblog has been published up to now. Everyone has to
start designing a microblog crawler from very beginning. A common software architecture based on
microblog APIs for microblog crawler is proposed in this paper, which is named as MBCrawler. Its
structure, architecture, and key classes are introduced. It can be seen that MBCrawler is modular and
scalable. By implementing a real microblog crawler for Sina Weibo, it is shown that MBCrawler can fit
specific features of different microblogs.

Keywords: Social Computing, microblog, crawler, Twitter

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction
Microblogs such as Twitter and Sina Weibo have attracted attention of users,

enterprises, governments, and researchers. They are interested in mining new information or
finding some regular patterns of information propagation for business or research. Maybe
governments can get the data by political power and enterprises by commercial behavior, but
getting data of microblogs is the first issue comes to researchers. Generally, because of privacy
and business reasons, microblog providers will not provide the data to researchers readily.

Early in 2001, the authors of [1] had described the common architecture of a search
engine, including the issues about selecting and updating pages, storing, scalability, indexing,
ranking, and so on. After that, the research about search engine technology has developed a
lot, such as focused crawler [2] and detecting similar Web documents [3]. However, being
different from traditional Web pages, Web 2.0 techniques such as AJAX (Asynchronous
JavaScript and XML) are widely used in microblog Web pages, and the contents in microblog
Web pages change too rapidly and dynamically for Web crawlers. That makes traditional
crawlers for static Web pages not work well to microblog Web pages. There have been some
researches on getting web content from AJAX based Web pages [4-6]. Nevertheless, they are
based on the state of the application, and the technique is not that easy to implement.
Fortunately, to encourage developers to develop applications about microblogs, the providers of
microblogs publish some APIs in form of Web Service. Well-formatted data of microblogs can
be returned by accessing the APIs in form of URLs. Except some work in which Twitter APIs
were not used [7], and the work in which the authors did not state how they got the Twitter data
[8] [9], most of existing research about Twitter utilizes the provided APIs [10-13].

It can be seen that Twitter APIs are widely used in the research work on Twitter. We
believe that using APIs is the most popular and easy way to get data from microblogs. That
motivates us to construct common software architecture to utilize the provided APIs, for
automatically downloading and storing well-structured data into database. To make it
convenient for researchers to obtain data from microblogs, a software architecture named as
MBCrawler, which means MicroBlog Crawler, is proposed. Basing on this software architecture,
a crawler using APIs of microblog with multi threads can be developed. The software

TELKOMNIKA e-ISSN: 2087-278X

Crawling Microblog by Common-Designed Software (Gang Lu)

3619

architecture is designed to be modular and scalable, so that more functions can be added easily
when more APIs are added, and details can be designed to fit different online social network
services.

2. MBCrawler
2.1. Basic Structure of MBCrawler

Software architecture named as MBCrawler is proposed. This software architecture
presents a main framework by which crawlers for microblog data can be easily designed,
developed, and expanded. MBCrawler is designed as multi-threaded, and consists of six
components, which are UI, Robots, Data Crawler, Models, Microblog APIs, and Database. The
structure of MBCrawler is illustrated in Figure 1.

Figure 1. Basic Structure of MBCrawler

(1) Database
At the most bottom of MBCrawler is a relational database, in which crawled data is

stored. The database tables are designed according to some entities, which are easily designed
because microblogging APIs return well formatted result in format of XML or JSON. There are
following main tables:

(a) A table named as users.

This table stores the basic information of users of microblogging services, such as user
ID, nickname, location, numbers of followers and following users, and so on.

(b) A table named as user_relations.

This table stores the relationships between users of microblogging services.
Relationships between users are recorded in the form of Source User follows Target User, by
the user IDs. As a result, there are main columns of this table, which are source_user_id and
target_user_id. For example, if User 1 follows User 2, where 1 and 2 are the two users’ IDs, the
source_user_id of the relationship will be 1, and the target_user_id will be 2.

(c) A table named as statuses.

This table stores the statuses crawled down, in-cluding the status ID, the content of the
status, user ID of the poster, the time when the status is posted, and so on.

 e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 7, July 2013 : 3618 – 3626

3620

(d) A table named as comments.
In microblogging services, users can comment on statuses. This table stores the

comments of statuses, including status ID, comment ID, the content of comments, the time of
comments, the user IDs of the commenters, and so on.

Above are the four main tables in the database of MBCrawler. Different microblogging
services may have different things, but users, user relationships, statuses, and comments are
the most basic items of microblogging services. Different items can be added in, but these four
items are necessary. There are two more tables, named as invalid_users and invalid_relations.
They are used to store banned users’ IDs and relationships which may have been canceled.

(2) Model Classes

Each entity like user and status has a database table correspondingly, as previously
introduced. On the other hand, entities appear as Model Classes to the upper layers of the
architecture, such as Robots and Data Crawler. Model Classes provide methods to manipulate
data in database by the model classes.

(3) Microblog APIs

Microblogs provide some APIs which meet REST (Representational State Transfer)
requirements. By calling those APIs, specific data will be returned in the format of XML or
JSON. The layer of Microblogging APIs includes simple wrapped methods of the APIs. The
methods submit URLs with parameters by HTTP requests, and return the result string in the
format of XML or JSON.

(4) Data Crawler

Data Crawler plays a role as a controller between Robots and Microblogging APIs.
From Robots, it receives commands indicating what data to crawl, and then invokes specific
method in Microblogging APIs. When Data Crawler receives the result string from
Microbloggings, it transforms the result strings from the format of XML or JSON into instances of
certain model class, which will be used by the upper layer, Robots.

(5) Robots

MBCrawler needs different threads with different robots working in them to crawl
different data at the same time. According to the four main tables given in database, the layer of
Robots includes at least four main robots, which are User Relation Robot, User Information
Robot, Status Robot, and Comment Robot. Each robot inherits from a base class of robots.
Every robot calls Data Crawler to crawl data online by Microblogging APIs. All robots have their
own waiting queues. Some are queues of users’ ID, some are queues of IDs of statuses, and
some are of IDs of comments. When a robot has crawled the data of head-of-queue, the head
will be move to the end of the queue. So the waiting queues are all circular queues. Being
different from robots of Web page, items in waiting queues of MBCrawler are not labeled to
avoid being processed again, if they have been processed by robots. The reason is that data on
microblogging services, such as user relationships, users’ information, etc., always changes.
When an item becomes the head-of-queue again, its data will be crawled again, in that the data
may have changed, and should be updated. Following is the description of the four main robots.

(a) User Relation Robot must work, because MBCrawler has to crawl data along the
social network constructed by user relationships. User Relation Robot starts working from a
specific user. It crawls the IDs of the user’s following users, and adds them to its waiting queue.
After that, it crawls the IDs of the user’s followers, and adds them to its waiting queue, too. It
can be seen that it’s BFS (Breadth First Search) on the social network.

(b) User Information Robot can be set to work or not. When it works, its waiting queue
increases as the one of User Relation Robot, because User Relation Robot adds new items into
it, too. User Information Robot crawls users’ basic information, including the user’s ID,
nickname, gender, number of followers, number of following users, and the user’s other basic
information. If the information of a user is newly crawled, it will be saved into database.
Otherwise, the data in database will be updated with the new one. If a user is found not to exist
(may be banned user), the user ID will be recorded in the table of invalid_users.

(c) Status Robot can be set to work or not. If it is set to work, its waiting queue
increases as the one of User Relation Robot, because User Relation Robot adds new items into

TELKOMNIKA e-ISSN: 2087-278X

Crawling Microblog by Common-Designed Software (Gang Lu)

3621

it, too. Status Robot crawls users’ statuses and save them into database. Status Robot queries
the last status stored in database for a certain user. If there have been some statuses in
database for that user, the robot will crawl statuses after the last one. Otherwise, the robot will
crawl statuses as very beginning as possible. When Status Robot has crawled some statuses of
a user, it arranges them into a queue, and then crawls statuses which retweet them one by one.
If some retweeting statuses are found, they are added to the status queue, too. Meanwhile,
Status Robot stores the statuses into database. On the other hand, crawled statuses include
data of the users who post them. Status Robot will try to add the user IDs into the waiting
queues of User Relation Robot, User Information Robot, and itself.

(d) Comment Robot can be set to work or not. As it works, in its waiting queue there are
status IDs. When Status Robot crawls statuses, the status IDs will be added into the waiting
queue of Comment Robot. As a result, it can be inferred that Comment Robot has to work
together with Status Robot, but working Comment Robot is not necessary for Status Robot.
Comment Robot crawls comments of a status and save them into database. Crawled comments
include data of the users who post them. Comment Robot will try to add the user IDs into the
waiting queues of User Relation Robot, User Information Robot, and Status Robot.

There is another issue we should consider. A crawler should run continuously.
However, some cases may interrupt its running. For example, the network disconnects, or even
the computer on which the crawler is running has to reboot. As a result, a crawler should
remember which point it has come to before it stops. For that reason, every robot will record the
user ID or status ID before it start to crawl the information of a user or comments of a status.
When the crawler restarts, the robots can find the user ID or status ID recorded before stopping,
and then start from it.

(6) UI

UI means User Interface. It’s the layer of representation, which shows some basic
information and makes users able to interact with the program, namely control the program. The
user who is using the program has to login the microblogging service by the program. After that,
the user’s basic information can be shown on UI. All working robots return messages during
their processes to UI, and the messages are shown on UI. UI provides some simple functions,
such as searching user online or in database. Necessary options of the program also can be set
by UI. For example, it is usually needed to provide the information of database to the program
by UI, so that the program can communicate with database. UI works in the main thread. By
selecting which robot to work together with User Relation Robot, multi sub-threads with robots
working in them are generated and started. What is the most important is that robots can be
started, paused, continued, or stopped at any time by the buttons on UI.

2.2. Multi-Threads Structure of Robots Layer

MBCrawler is multi-threaded. Besides the main thread of UI, more threads with robots
working in them are generated, so that different robots can work in parallel. The structure of the
multi-threaded robots and their queues is as in Figure 2 shows.

Figure 2. Multi-Threaded Robots and Their Queues

 e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 7, July 2013 : 3618 – 3626

3622

Each robot has its own waiting queue. The queue of Comment Robot is of status IDs,
and others are of user IDs. All of the queues can be accessed by any robots.

The arrows between robots and the waiting queues in Figure 2 show the data flow
direction between them. Basically, every robot fetches the head item from its own queue to
crawl, and then move the item to the end of the queue. By crawling followers and followings IDs
of a user, User Relation Robot processes a BFS in the social network of microblogging service.
According to which robots are working, User Relation Robot will make the waiting queues of
itself, User Information Robot and Status Robot grow at the same time, by adding new items to
the queues synchronously. User Information Robot only fetches head item from and move it into
the end of its waiting queue, but not add new items into any queues. Status Robot crawls the
statuses posted by users as many as possible. Before saving a status into database, Status
Robot crawl more statuses which retweet it. When a status is crawled while Comment Robot is
working, Status Robot adds the ID of the crawled status into the waiting queue of Comment
Robot. Status Robot also adds the user IDs included in the data of crawled statuses into its own
queue as well as queues of User Relation Robot and User Information Robot if they do not exist
in them. Like Status Robot, Comment Robot also adds commenters’ user IDs included in
crawled comments into the queues of User Relation Robot, User Information Robot and Status
Robot.

As it is known, the waiting queues exist in memory. As they grow, they will occupy more
and more memory. Considering that the amount of memory is limited, the size of the queues in
memory should be limited, too. Solution for this issue is to limit the size of queues in memory,
and let them grow in disk when their sizes in memory reach the limit. Database tables are
provided for each queue separately. When the size of a queue reaches the limit, new items will
be added into the corresponding table. The time when the items are added is also stored in the
tables, so that items in the tables can be sorted in the order of their added time. When a queue
extends into disk, namely uses its database table to store new items, head item will be moved
into the database table as well. In that way, the part in memory and the part in the table work
together as a whole queue. When all the items in memory have been moved to the end of a
queue in database table, a series of items in front of the queue in database table will be moved
from the table into memory to be processed.

2.3. Key Classes of MBCrawler

There are some key classes in MBCrawler. Those classes make up some modules to
contribute to the implementation of main functions of MBCrawler.

(1) Model Classes.

In order to separate functions of software from specific database operation, Object
Relational Mapping (ORM) is used by defining several model classes. The member variables of
those classes correspond to the properties of entities, such as users’ ID, users’ name, etc.,
which are stored in tables in database. Besides, Model Classes also defined the methods for
basic CRUD operation in database. They take charge of transforming data between database
and Data Crawler or the robots. They make the logic functions of software not need to care
about specific database operation.

(2) Database Factory Classes.

MBCrawler needs a database to store the crawled data. In order to not to be limited to a
specific type of database, the Factory Pattern is used to design the classes for database
accessing.

The class Database is an abstract class, which defines the methods necessary for
database operation. According to specific type of database, different subclasses can be defined
by inheriting the root class Database, and implementing the methods defined in class Database.
For example, SqlDatabase and OracleDatase both inherit Database, but they implement the
methods for MS SQL Server and Oracle respectively. If it is needed, more subclasses for other
types of databases can be added.

By class DatabaseFactory, the design pattern Factory is used to create instance of
class Database. DatabaseFactory returns an instance of Database for any type of database. In
that way, the change of database type is limited in class DatabaseFactory, but not distributes
everywhere in the code.

TELKOMNIKA e-ISSN: 2087-278X

Crawling Microblog by Common-Designed Software (Gang Lu)

3623

(3) Robot Classes.
MBCrawler generates multi threads with robots working in them. That should be a

scalable structure, so a basic class for robots is designed and new robot classes can be easily
extended from it. The base class RobotBase defines the necessary queues and the methods.
Subclasses for specific robots inherit from it, and implement their own methods, especially
Start(), in which how the robots work is specified.

(4) Queue Classes.

As it is shown in Section 2.2, each robot has a waiting queue. A waiting queue is
divided into two parts, which are the part in memory and the part in database. Every robot
maintains the handles of some queues of user IDs or status IDs. The class QueueBase defines
queue handles and the basic operations.

The whole queue is designed as a circular queue, to ensure that every node will be
process repeatedly for information updating. As a result, the queues will grow longer and longer
as the crawler works. However, the limited memory of computer cannot contain unlimited
queues. To deal with that issue, a queue is departed into two parts. One part is maintained in
memory, which is defined as lstWaitingID. The other part is stored in disk, namely in database,
which is defined as lstWaitingIDInDB. lstWaitingID and lstWaitingIDInDB both are member
variables of class QueueBase. lstWaitingID is a linked list, whose length is limited by
iMaxLengthInMem. lstWaitingIDInDB is an instance of class QueueBuffer. When a robot starts
to work, it will create a temporary table in database, in order to extend the queue handled by it
in disk. When the length of the whole queue is longer than iMaxLengthInMem, new node will be
added into the temporary table. In this case, all nodes of lstWaitingID will be moved into
lstWaitingIDInDB at last. At this time, the first iMaxLengthInMem nodes of lstWaitingIDInDB will
be moved into lstWaitingID. QueueBufferFor is an enumeration type that helps QueueBuffer to
determine for which robot to create lstWaitingIDInDB. Figure 3 illustrates the structure and
working process of a queue.

Figure 3. Structure and Working Process of a Queue

However, the previous process of queue managing maybe not good enough. When
lstWaitingIDInDB is very long, that means the table storing the queue has too many records. If
iMaxLengthInMem is set to a big number, the process of moving iMaxLengthInMem IDs from
lstWaitingIDInDB to lstWaitingID will take a long time. That may cause the response of database
timeout. An alternate way to solve the problem, is adding an additional thread to take the charge
of moving IDs between the two parts of the queue. Producer-Consumer model can be used
here. Figure 4 shows the improved process.

As Figure 4 illustrates, a model called Queue Coordinator and a queue named Back
Buffer are added. Queue Coordinator fetches IDs from lstWaitingIDInDB to lstWaitingID. A
crawling robot fetches ID from lstWaitingID to crawl. After that, it sends the crawled ID to Back
Buffer. At the same time, Queue Coordinator fetches crawled IDs from Back Buffer and pushes
them to the end of lstWaitingIDInDB. The crawling robot and Queue Coordinator work
asynchronously in parallel. From the view of lstWaitingID, Queue Coordinator is the producer,
and the crawling robot is the consumer. On the contrary, from the view of Back Buffer, Queue
Coordinator is the consumer, and the crawling robot is the producer. Of course, each robot
needs a Back Buffer, but only one Queue Coordinator can manage all of the queues.

 e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 7, July 2013 : 3618 – 3626

3624

Figure 4. Producer-Consumer Based Queue Managing

 (5) Other Utility Classes.
There are other utility classes wrapping some functions to make them easy to use. For

example, classes about the settings make the options such as the information of database
connection saved into and loaded from an encrypted file by serializing and deserializing. There
are also GlobalPool and PubHelper classes. All public objects which can be accessed by every
part of MBCrawler at any time are organized in GlobalPool class in form of static members.
PubHelper encapsulates some gadget functions and provides easy-to-use methods of them.

3. Implementation as Sinawler

Basing on MBCrawler, a crawler program named as Sinawler (Sinawler is the
combination of the words Sina and crawler) for Sina Weibo, is developed. Its code can be found
at http://code.google.com/p/sinawler. Sina Weibo is one of the most popular microblogs in
China. It has some more features than Twitter. For example, users of Sina Weibo can label
themselves with no more than 10 words, which reflect the users’ hobbies, profession, and so on.
These words are called as tags. As a result, a new robot takes the charge of crawling the data
about tags is added in Sinawler, which is named as UserTagRobot.

In our research work, Sinawler initially ran for months. During that time, it crawled
8,875,141 users’ basic information, 55,307,787 user relationship, 1,299,253 tags, 44,958,974
statuses, and 35,546,637 comments. The data is stored in a SQL Server database. However, in
that time, Sinawler was frequently stopped to be modified because of bugs and updates. That
makes the data some dirty due to some testing result. From 15:54:46 on May 30th, 2011 to
11:44:26 on January 7th, 2012, a stable version of Sinawler was running uninterruptedly. The
new data obtained this time is listed in Table 1.

Table 1. Crawled Data by a Stable Version of Sinawler
Robot Data Content Total Records ACR (Records/Minute)

UserInfoRobot User Information 6,571,955 20
UserRelationRobot User Relationship 37,902,219 118

UserTagRobot
Tag 1,068,060 3

User Owning Tags 8,031,712 25
StatusRobot Status 32,627,963 102

CommentRobot Comment 26,884,365 84

ACR is the abbreviation for Average Crawling Rate. It is different for each robot,
because they access different Sina Weibo APIs. For example, only one user’s information can
be obtained by UserInfoRobot for each invoking the relative API, while at most 5000 user
relationships can be obtained by UserRelationRobot for one time. ACR is also related to the
data. For instance, many users don’t set their tags, so UserTagRobot can’t get their tags. That
lowers the ACR of UserTagRobot.

TELKOMNIKA e-ISSN: 2087-278X

Crawling Microblog by Common-Designed Software (Gang Lu)

3625

4. Conclusion and Future Work
MBCrawler, which is a software architecture for microblog crawler, is proposed here. By

dividing the whole architecture into several levels and applying some simple design patterns,
the structure of the architecture is highly modularized and scalable. The different parts of the
architecture are loose coupling, and each part is high cohesion. That makes it easy to be
modified and extended.

A crawler software for Sina Weibo is implemented basing on MBCrawler, which is
named as Sinawler. A robot about users’ tags are easily added according to Sina Weibo API.
Because of the careful design of the architecture, we have easily upgrade Sinawler according to
Sina Weibo API 2.0, in which only JSON format is used and some new properties are added to
users, tags, and so on. A large number of data from Sina Weibo has been crawled by Sinawler.

Comparing to traditional Web page crawlers, MBCrawler has its own features.
Microblog APIs are the foundation of the design and implementation of MBCrawler, so
MBCrawler does not need to download Web pages to store and parse. No indexing module for
Web pages is needed as well. Well-structured data is returned by microblog APIs and is stored
into databases directly. As a result, complex technical issues resulted from AJAX are avoided.
In addition, the indexing mechanism of the used database can be utilized to enhance the
performance of the database.

Nevertheless, there is an important condition for using MBCrawler. To access the APIs,
MBCrawler has to act as an application registered at the microblog provider. Fortunately, it is
easy to register applications for it. After that, a unique pair of App Key and App Secret will be
given to access APIs by the application. We registered five applications for the five robots in our
Sinawler. As a result, each robot can work as an independent application, and they will not
share the same access frequency restriction. That makes Sinawler work more efficiently.

In the future, we think MBCrawler can be improved mainly in two aspects. Firstly, a
focused module can be designed and added. So that we can tell the robots what type of data to
crawl. For example, the robots can be told to crawl the information of users who are in a specific
city, or the statuses including specific words. Secondly, we would like to design a ranking
module. It is impossible to crawl the whole social graph due to the large scale of it. A ranking
module will help the crawler to select more important users to crawl. Some researches about
social network crawling strategy can be embedded in this module, too. Additionally, because
database is loosely coupled with MBCrawler, different databases can be easily tried, such as
some NoSQL databases according to the practice requirements. For example, using any one of
graph databases such as Neo4j to store the social graph would be interesting. New types of
databases may bring new useful features.

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities
grants ZZ1224.

References
[1] Arasu A, Cho J, Garcia-Molina H, Paepcke A, Raghavan S. Searching the web. ACM Transactions

on Internet Technology. 2001; 1(1): 2-43.
[2] Maimunah S, Sastramihardja HS, Widyantoro DH, Kuspriyanto NFN. CTFC: more Comprehensive

Traversal Focused Crawler. KOMUNIKA Indonesian Journal of Electrical Engineering. 2012; 10(1):
189-198.

[3] Das S, Mathew M, Vijayaraghavan P. An Efficient Approach for Finding Near Duplicate Web pages
using Minimum Weight Overlapping Method. International Journal of Electrical and Computer
Engineering. 2011; 1(2): 187-194.

[4] Mesbah A, van Deursen A. Invariant-based automatic testing of AJAX user interfaces. Proceedings of
the 31st International Conference on Software Engineering. Washington, DC, USA. 2009; 210-220.

[5] Peng Z, He N, Jiang C, Li Z, Xu L, Li Y, et al. Graph-Based AJAX Crawl: Mining Data from Rich
Internet Applications. 2012 International Conference on Computer Science and Electronics
Engineering. Hangzhou, China. 2012; 590-594.

[6] Mesbah A, van Deursen A, Lenselink S. Crawling Ajax-Based Web Applications through Dynamic
Analysis of User Interface State Changes. ACM Transactions on the Web. 2012; 6(1):1-30.

 e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 7, July 2013 : 3618 – 3626

3626

[7] Weng J, Lim E-P, Jiang J, He Q. TwitterRank: finding topic-sensitive influential twitterers.
Proceedings of the third ACM international conference on Web search and data mining. New York,
USA. 2010; 261-270.

[8] Mendoza M, Poblete B, Castillo C. Twitter Under Crisis: Can we trust what we RT? Proceedings of
the First Workshop on Social Media Analytics. Washington, DC, USA. 2010; 71-79.

[9] Sriram B, Fuhry D, Demir E, Ferhatosmanoglu H, Demirbas M. Short text classification in twitter to
improve information filtering. Proceeding of the 33rd international ACM SIGIR conference on
research and development in information retrieval. Geneva, Switzerland. 2010; 841-842.

[10] Kwak H, Lee C, Park H, Moon S. What is Twitter, a social network or a news media? Proceedings of
the 19th international conference on World Wide Web. Raleigh, USA. 2010; 591-600.

[11] Wu S, Hofman JM, Mason WA, Watts DJ. Who says what to whom on twitter. Proceedings of the
20th international conference on World Wide Web. Hyderabad, India. 2011; 705-714.

[12] Bakshy E, Hofman JM, Mason WA, Watts DJ. Everyone’s an influencer: quantifying influence on
twitter. Proceedings of the fourth ACM international conference on Web search and data mining.
Hong Kong, China. 2011; 65-74.

[13] Li R, Lei KH, Khadiwala R, Chang KC-C. TEDAS: A Twitter-based Event Detection and Analysis
System. International Conference on Data Engineering. Los Alamitos, CA, USA. 2012; 1273-1276.

