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Abstract 
There are mainly two types of errors existed in monitoring displacement of a rock slope: gross 

errors and random errors. Monitoring data is very important for the safety construction and operation of the 
Hydropower Station. The use of slope monitoring data for safety evaluation is influenced by the gross 
errors during the monitoring process. This paper presents a gross error denosing method for a nonlinear 
time series based on the three-standard-deviation rule (3-σ rule), and then reconstructing the time series 
by a first-order Lagrange interpolation method. The present method is applied to the gross error analysis of 
the slope displacement monitoring data collected at the Jinping I Hydropower Station. Computed results 
show that the first-order difference values of the gross errors can be above or below the upper or lower 
three-standard-deviation boundary, and the gross errors can be removed effectively. 
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1. Introduction 

With the rapid growth in energy demand, lots of Hydropower Stations are constructed or 
planned in future [1]. Technical progress has promoted the rapid development of geotechnical 
engineering, and it has also brought unprecedented high slope stability problems, especially for 
large hydropower stations [2]-[4]. Therefore, safety monitoring of high and steep slopes has 
become a key technological problem in geotechnical engineering [3]. Data analysis is a key 
element of safety monitoring; it includes data preprocessing, forecasting, and early warning. 
There are varieties of processing methods for noisy time series, such as information theoretic, 
adaptive filtering, dynamical systems and stochastic approaches, and wavelet transform [4]-[5]. 
The reliability of a slope stability evaluation is determined by the accuracy of the monitoring 
data. Errors in the monitoring data occur, and the data should be denoised to remove the errors 
[6]-[8]. High slope-safety monitoring data are in the form of time series, the study of which has 
many aspects, such as error analysis, nonlinear prediction, back analysis and comprehensive 
analysis.  

During the monitoring process for a slope at Hydropower Station, several types of errors 
are existed in a nonlinear time series, gross error and random error are the two main errors 
impact on the monitoring data [9], all of these errors should be removed before the data is used 
for safety evaluation of slope, and the gross error is the most important one [10]. There are 
varieties of processing methods for noisy time series, such as information theoretic, adaptive 
filtering, dynamical systems and stochastic approaches, and wavelet transform [10]-[13]. 
Previous methods have mostly used unilateral reduction of gross errors or random errors, and 
the reconstructed signals still contain a great number of errors that affect the accuracy of 
subsequent analytical results [14]-[17]. In the present paper, the three-deviation rule for a 
difference sequence is applied for gross error identification and modification. It is based on 
statistical theory for data processing and error evaluation, and the gross error can be removed 
effectively. 
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2. Gross Error of Slope Monitoring Displacement 
According to error theory for measurement data, the errors in monitoring data can be 

divided into three types: gross error, random error, and systematic error. Gross error is usually 
caused by an observational mistake, with a sudden, single outlier. When the monitoring time 
series is obtained under the same observation conditions, random error (also called accidental 
error) exists occasionally in the size; its impact can be reduced effectively during data 
processing as the measured number increases. Systematic error shows systematic 
characteristics in size and symbol; its impact can be reduced generally through timing 
calibration apparatus and a calibration datum mark [6].  

In addition, some abnormal deformation values exist in the monitoring time series 
because slope deformation of soil or rock mass is influenced by the change in external loading 
and environmental variable mutation. An abnormal deformation value is different from the gross 
error [11]. It has potential and valuable information for the slope stability analysis and should be 
retained. Therefore, according to the nonlinear time series of the data, the gross error denoising 
process of displacement monitoring data during error analysis is: identification of the gross 
errors and abnormal deformation values and removal of gross errors.  

Figure 1 shows a slope displacement time series from monitoring points M4
4 and M4

6 at 
the Jinping I Hydropower Station. 
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Figure 1. Gross errors exist in slope displacement time series 
 
 

As shown in Figure 1, gross errors exist in the nonlinear time series of monitoring data 
of slope displacement. The time series are distorted by the gross errors during the monitoring 
process. The denoising effect is influenced by the gross errors, so they should be removed first, 
and then the smoothing of the nonlinear time series. 
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3. Gross Error Denoising Method 
Tendency and non-stationary characteristics exist in the nonlinear time series of 

displacement monitoring data. Here a difference sequence method is applied to remove the 
variation trend of a time series and transform it into a stationary time series [17]. For the 
difference method, the first- or higher-order difference is computed for the non-stationary time 
series until it becomes a smooth difference sequence, and then the gross errors are detected 
from the smooth difference sequence.  

According to the slope monitoring displacement data, the original nonlinear time series 
[11] obtained by monitoring displacement is assumed to be as follows: 

 
   nixxxxx nii ,,2,1,,,,,,][ 21    (1) 

 
where i is the number of the monitoring displacement data values. 

The first-order difference equation for one monitoring datum xi of the nonlinear time 
series is as follows: 

 

1 iii xxx  (2) 

 
where   is the first order difference, xi is the monitoring displacement of point i, and xi-1 is the 
monitoring displacement of point i-1. 

The k-1 order difference equation for one monitoring datum xi of the nonlinear time 
series is as follows: 
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where k  is the k order difference, and 1 k  is the k-1 order difference. 
Then the first-order difference sequence and k-order difference sequence can be 

obtained: 
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The gross errors in the nonlinear time series of displacement monitoring are detected 

from the difference sequence. 
The gross errors in the nonlinear time series are detected by applying the three-

standard-deviation rule (3-σ rule). The 3-σ rule is based on the hypothesis that a group of 
normal distribution monitoring data contains random error and gross error and that there is a 
standard deviation σ. Then an interval of 3  is defined so that 99.74% of the data is expected 
to lie within this interval. If a data point lies outside this interval, then it is assumed as a gross 
error, should be smoothed.  

For the first-order difference sequence of displacement monitoring data, when the 3-σ 

rule is applied to detect gross errors, the average value x  of the difference values ix  is 

substituted for the true value, and the standard deviation S calculated by the Bessel formula is 
substituted for σ. First the residual error is computed as follows:  

 

xxv ii   (6) 

 
where iv  is the residual error.  

The residual error of suspicious monitoring data should satisfy the following equation:  
 

 niSxxv ii ,,2,1,3   (7) 
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where x  is the mean value of the difference sequence and can be computed as follows:  
 

n

xxx
x n


21  (8) 

 
where S is the standard deviation calculated by the Bessel formula: 
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As shown in Eq. (7), the residual error of suspicious monitoring data is computed from 

the first-order difference sequence, and the gross error may be detected by the 3-σ rule. The 
interval for removing the gross error of the difference sequence is as follows:  

 

   SxSxEE 3,3, maxmin   (10) 

 
where Emin is the minimum vale of the error, and Emax is the minimum vale of the error. 

The gross errors in the nonlinear time series from displacement monitoring can be 
detected by the 3-σ rule based on the first-order difference sequence, especially when the 
sample number is larger than 50, which occurs especially for long historical records from 
monitoring displacement of slope. If the gross errors can not be detected based on the first-
order difference sequence, a k-order difference sequence should be used to apply the 3-σ rule, 
such as a second-order or third-order difference sequence [17]. 

After the data affected by gross errors have been removed from the nonlinear time 
series, the time series is no longer continuous, so repair becomes necessary. A polynomial 
interpolation method is applied to repair the monitoring data time series. The polynomial 
interpolation method includes two types: the first-order Lagrange interpolation method and the 
quadratic Lagrange interpolation method. In the present study, the first-order Lagrange 
interpolation method is used. 

If the coordinates of two points near the interpolated point are (t1, x1) and (t2, x2), 
according to the first-order Lagrange interpolation method, then the coordinates of the 
interpolation point are obtained as follows: 
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where x is the displacement value of the interpolation point, and t is the monitoring time of the 
interpolation point. 

In summary, the gross errors in the nonlinear time series of displacement monitoring 
data are detected by the 3-σ rule, and the time series is repaired by the first-order Lagrange 
interpolation method. The continuity of the time series is thereby restored by the interpolation 
points.  

 
 
4. Validation 

In this section, the nonlinear time series of displacement monitoring of the left bank 
slope at the Jinping I Hydropower Station are used to verify the present data denoising method. 
The method is implemented by Matlab 6.5 professional software. The gross errors in the 
nonlinear time series are detected by the 3-σ rule and repaired by the first-order Lagrange 
interpolation method.  

Jinping I Hydropower Station is located at the big bend of the Yalong River, Muli 
County, Liangshan city, Sichuan province, southwest China. An arch dam 305 m high will be 
built and will be the highest dam in the world. A large amount of slope excavation is carried out 
for the construction of the dam, especially on the left bank slope. The maximum excavation 
height is about 540 m, and the excavation volume is about 5.5 million m3. The slope stability is 
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influenced by the poor geological conditions and high in-situ stress, so that substantial 
monitoring measures are planned for the safe control of the slope during excavation. Monitoring 
displacement is a real reflection of the stability status of slope, but its influenced by several 
errors.  

A large amount of slope excavation is carried out for the construction of the dam, 
especially on the left bank slope. The slope stability is influenced by the poor geological 
conditions and high in-situ stress, so that substantial monitoring measures are planned for the 
safe control of the slope during excavation. The slope deformation monitoring includes internal 
deformation monitoring, appearance deformation monitoring (surface deformation), and crack 
opening degree monitoring. Here we select two monitoring points, M4

1 and M4
3, which are near 

the horizontal monitoring section EL. 1990 m (EL. is the elevation). 
During displacement monitoring, the displacement is influenced by external factors, 

such as construction disturbance, instrument precision, and external environment. Some errors 
exist in the monitoring data, and if the monitoring data were directly applied to slope stability 
evaluation, forecasting and early warning. Therefore, data preprocessing is the prerequisite for 
data analysis calculations. 

Figure 2 shows the nonlinear time series of displacement monitoring at the points M4
1 

and M4
3. 
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Figure 2. Nonlinear time series of monitoring displacement in slope 
 
 

As shown in Figure 2(a), in the end of the nonlinear time serie, the data is distorted by 
serveral factors, the gross errors are hard to detected. As shown in Figure 2(b), the 
accumulative displacement at point M4

3 slowly grows with the time, a characteristic of a typical 
stable time series with few abnormal data. Gross errors exist in these two time series, so they 
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should be denoised first. Here the 3-σ rule is used to detect the gross errors, and then the time 
series is repaired by the first-order Lagrange interpolation method.  

Firstly, the first-order difference of the original time series is computed. Figure 3 shows 
the first-order difference of the time series of displacement and the three-standard-deviation 
boundary of gross errors.  

 
 

-1.5

-1

-0.5

0

0.5

1

1.5

06/11/1 07/5/20 07/12/6 08/6/23 09/1/9 09/7/28 10/2/13 10/9/1
Time (yy-mm-dd)

D
is

pl
ac

em
en

t 
(m

m
)

 
(a) monitoring point M4

1 
 

-4

-2

0

2

4

6

8

06/6/22 07/1/8 07/7/27 08/2/12 08/8/30 09/3/18 09/10/4 10/4/22 10/11/8
Time (yy-mm-dd)

D
is

pl
ac

em
en

t 
(m

m
)

 
(b) monitoring point M4

3 
 

Figure 3. First-order difference of nonlinear time series 
 
 

There is no obvious increasing tendency for the data distribution of the first-order 
difference series, so that the gross errors can be detected by the 3-σ rule. Table I shows the 
computed results of the first-order difference sequence by application of the 3-σ rule. 
 
 

Table 1. Computed results of the first-order difference series by the 3-σ rule 
Monitoring point Mean value Standard deviation of FODS sample Interval of FODS sample 

M4
1 0.00 0.25 [-0.74,0.74] 

M4
3 0.10 0.61 [-1.74,1.94] 

(FODS is the first order difference series; 3-σ is the three-standard deviation). 
 
 

As shown in Table 1, the mean values of the first-order difference series for monitoring 
points M4

1 and M4
3 are 0.00 and 0.10, respectively; the standard deviations are 0.25 and 0.61, 

respectively. As shown in Fig. 3, the upper and lower three-standard-deviation boundaries of 
monitoring point M4

1 are 0.742 and -0.743, respectively; the upper and lower three-standard-
deviation boundaries of monitoring point M4

3 are 1.943 and -1.742, respectively. There are 5 
gross errors in the time series of monitoring point M4

1. The observation dates are November 21, 
2008, June 18, 2009, August 4, 2009, February 10, 2010 and May 6, 2010. There are also 5 

Upper boundary: 1.943

Lower boundary: -1.742

Gross error point 

Upper boundary: 0.742 

Lower boundary: -0.743 
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gross errors in the time series of monitoring point M4
3. The observation dates are August 12, 

2006, January 6, 2008, January 10, 2008, October 6, 2008 and October 11, 2008. Table 2 
shows the first-order difference values of the gross error points in the time series of monitoring 
point M4

3. 
 
 

Table 2. First order difference values of the gross error points existing in the time series  
Time 

(yy-mm-dd) 

Difference value 

of the gross error point 

Difference value 

of the former point

Difference value 

of the latter point 

06-8-12 6.42 -0.12 1.90 

08-1-6 -1.93 -0.24 2.14 

08-1-10 2.14 -1.93 -0.04 

08-10-6 2.55 -0.39 -2.12 

08-10-11 -2.12 2.55 0.13 

 
 

As shown in Table 2, the first-order difference values of the gross error points are above 
the upper or below the lower three-standard-deviation boundary. The gross error points exhibit a 
jump characteristic and should be removed from the time series. The gross errors must be 
removed and the time series reconstructed. In this paper, the first-order Lagrange interpolation 
method is applied to repair the time series. Figure 4 shows the reconstructed time series 
obtained after this processing.  
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Figure 4. Reconstructed time series by the first-order Lagrange interpolation method 
 
 

As shown in Figure 4, the gross errors in the time series have been removed, and the 
time series is smoother, the gross errors existed in the nonlinear time series are removed 
effectively. 
 



                       ISSN: 2302-4046 

TELKOMNIKA Vol. 11, No. 10, October 2013 : 5545 – 5552 

5552

5. Conclusion 
During safety monitoring of high rock slopes, abnormal information or errors exist in the 

time series of displacement monitoring data due to the influence of external objective conditions, 
such as construction conditions, climate factors, and monitoring instruments. There are several 
errors existed in the nonlinear time series of monitoring data. Gross error is usually caused by 
observation mistake and impact on the safety evaluation of slope very obviously. In this paper, a 
gross error denoising method is presented, the gross errors in the nonlinear time series are 
detected by the three-standard-deviation rule (3-σ rule), and then the time series is 
reconstructed by the first-order Lagrange interpolation method.  

The nonlinear time series from monitoring of the displacement of the left bank slope at 
the Jinping I Hydropower Station is used to verify the present data denoising method. First the 
gross errors are detected by the 3-σ rule. The gross error points show a jump characteristic and 
should be removed from the time series. The computed results show that the first-order 
difference values of the gross errors are either above or below the upper or lower three-
standard-deviation boundary. Then the nonlinear time series is repaired by the first-order 
Lagrange interpolation method, the gross errors are removed effectively.  
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