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Abstract 
Through the analyzing of limitations on wavelet threshold filter de-noising, this paper applies 

wavelet filter based on compressed sensing to reduce the signal noise of spectral signals, and compares 
the two methods through experiments. The results of experiments shown that the wavelet filter based on 
compressed sensing can effectively reduce the signal noise of spectral signal. The de-noising effect of the 
method is better than that of wavelet filter. The method provides a new approach for reducing the signal 
noise of spectral signals. 
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1. Introduction 

Spectral measurement technology has been widely used in the field of atmospheric 
remote sensing monitoring technology and atmospheric chemistry research. Based on its 
advantages, it is quite suitable for real-time monitoring in large scale field. But in the process of 
acquiring near infrared spectrum, there are many noises were brought for the factors such as 
spectrum instrument itself, band range of ground spectrometer, resistance thermal noise of 
spectrum signal, random error, etc. Factors of ground environment and atmospheric 
(illumination conditions), measuring by airborne sensing instrument and space-borne sensing 
instrument can also change the spectral characteristics. Thus, there may be noise interference 
in the spectrum we have gotten [1]. So, the spectral signal which obtained from spectrometer 
should be de-noised to reduce the interference from external factor that disturb on the 
spectrogram. 

There are many spectral de-noising method at present, i.e. wavelet threshold method 
[2], Gaussian filter [3] and wavelet packet domain de-noising method [4]. But those methods are 
always used with the condition that there is a large difference between signal frequency and 
noise frequency. However, current research still focus on signal de-noising which the frequency 
of noise is close to the frequency of signal itself. Such as Donoho put forward de-noising by 
using wavelet threshold [5], in this method a threshold value was given, the algorithm reserve 
the signals whose wavelet coefficient amplitude value is greater than the threshold value, 
otherwise wipe it off. In general, the substance of wavelet de-noising is that separate the useful 
information and noise with spectrum in frequency domain. But high frequency part also exists in 
spectrum. This kind of method lost many parts of useful information while removing noise. 

The main idea of CS (Compression Sensing) is acquiring linear projection of signal in a 
given region, and then reconstructing the original signal by corresponding reconstruction 
algorithm [6]. It is pointed out in literature [7] that the wavelet coefficients of noiseless signal got 
by Mallat algorithm should be sparse, that is to say there is only a few large amplitude 
coefficient in the dimensions of the wavelet coefficient, but when noise exist in the signal, the 
sparseness of wavelet coefficients will be reduced greatly. Therefore, we can recover the 
sparseness of wavelet coefficients by using compression sensing to achieve the purpose of the 
signal de-noising. It can avoid threshold selection in wavelet threshold filtering which always 
difficult to choose by using this method. 
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In this paper we proposed spectral signal de-noising method based on compression 
sensing, which is contraposed the shortcomings of traditional wavelet de-noising method. It 
overcome the current problem of wavelet de-noising, and achieved better de-noising result. And 
the base of the signal decomposition in this paper is learning dictionary. While in the most other 
related researches, the dictionary is based on a certain redundant dictionary such as Gabor or 
Curvelet etc. The algorithm of learning dictionary is designed to find the optimal dictionary. 
Based on the sparse representation of this dictionary, it can minimum mean square error of 
approximation for samples. Compared with fixed dictionary, there are many advantages by 
using learning dictionary, such as more flexible and avoid many limitations. On the other hand, it 
can save much signal processing time by using learning dictionary. 

 
 

2. Sparse Representation 
In 1993, Mallet and Zhang first proposed that through the decomposition of signal in the 

over-complete dictionary, the base of signal (which was called dictionary) can be represented 
flexible in the way of selecting bases on the characteristics of the signal itself. This concise 
expression which comes up from the signal decomposition is called sparse represents [8]. 
Sparse representation includes two parts that are the process of dictionary selected and the 
process of sparse coding. The selection of the dictionary can be divided in two methods, the 
way based on the over-complete dictionary and the way based on learning dictionary. In over-
complete dictionary based method, an atomic library is given to the signal (the atoms in the 
atomic library can either be orthogonal or non-orthogonal), through this way to solve the 
component expression of the signal in the atomic library. Dictionary learning means to learn a 
basic matrix D from training pattern, making each sample can be better represented with 
multiplied by a dictionary D and the coefficient of the vector [9]. Sparse coding means the 
process of solving sparse coefficient vector from a given base matrix D. It can be presented as: 

 

0
min subject to x D   (1) 

 

Here
0

represents zero norm, that is the number of non-zero elements. 

But Donoho pointed, problem of solving the smallest L0 norm is essentially a NP-hard 
(Nondeterministic Polynomial-time hard) problem. The issue usually needs to be converted. The 
researchers made a series of obtained suboptimal solutions, which including algorithm of 
minimum L0 norm, matching Pursuit algorithm, the iterative threshold method and smallest full 
variational method [6]. It is proved theoretically that in the sparse coding L1 norm and L0 norm 
are equivalent when under some certain conditions [10] [11]. 
 
 
3. Compressed Sensing 

The specific meaning of the sparse representation is to use as few elements as 
possible to represent the information. The core idea of compressed sensing is to obtain sparse 
representation of the signal and reconstruct the original signal through reconstruction algorithm 
[12] [13] [14]. 

For an unknown signal, if it is K-sparse or it becomes K-sparse by a known transform, it 
does not need as much coefficient as the Nyquist principle demanded(which demand the 
sample frequency is at least the twice as the highest frequency of the original signal) to 
reconstruct original signal accurately in the linear transformation. This is the basic idea of the 
CS theory. Let  (n) be the N-dimensional digital signal which obtained from the conventional 
sampling, and y(m) is M-dimensional sampled signal which obtained by compressing sensing 
theory, wherein M <N. The relationship between y and   can be expressed as y = Φ . Φ is 
the observation matrix or the measurement matrix which size is M × N. This formula can be 
regarded as a linear projection of the original signal   at Φ. As the dimension of y (presented 
with M) is far less than the dimension of  (presented with N), there are infinitely many 
solutions according to the equation y to finding . We can reconstruct the original signal 
through the way of solving the optimal solution of linear programming problems [15]. 

In the theory of compressed sensing, the most fundamental basis of signal recovering is 
spares characteristics at projection of original signal in a transform space. But the presence of 
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noise has destroyed the sparsity of the signal in the transform space. When using optimization 
method to restore the signal, if we treat noisy signal by using a single sparse constraint 
principle, the original signal cannot be reconstructed accurately. Nevertheless, compressed 
sensing theory can still be reconstructed effectively. The main difference is in the form and 
parameter settings in process of reconstruction of optimization objective function. Using different 
optimization objective functions, the signal reconstruction effects are different [15]. 

That is to mean, if there is a signal ( )My y R  which length is M, the base vector for the 

signal is i (i 1,2,...,M)  . Make the transformation of: 
 

1

or
M

i i
i

y y  


     
 

(2) 

 
In this equation,  is the sparse representation of signal. Whether the signal has 

sparsity or approximate sparsity is the critical issues which decide success of using of the 
compressed sensing theory [16]. 

For signal de-noising, first we need to solve L1 or L2 norm of signals and get sparse 
representation, then use the transfer matrix Φ to reconstruct the signal. Then the signal de-
noising is realized. 

The problem of optimization in signal reconstruction process is very similar to the 
problem with optimization in signal sparse decomposition.  

So some scholars looking for more effective ways of solving signal from sparse 
decomposition theory. The solutions which are commonly used are Basis Pursuit (BP), 
Matching Pursuit (MP) and Orthogonal Matching Pursuit (OMP) etc. 
 
 
4.Spectral De-noising Model Based on Compressed Sensing 
 
A. De-noising model 

The problems of spectral noisy can be modeled as: 
 

y x n    (3) 

 
Here y is the observation noisy signal, x is the original signal and n is independent zero-

mean additive white Gaussian noise. According to the theory of compressed sensing, it can be 
representing as: 

 
y x n      (4) 

 
 is sparse representation of the signal under transform Φ. If the spectrum is clean 

signal which means without any noise, we may solve the problem of: 
 

0     arg min|| || . .s t x      (5) 

 
The clean spectrum signal has sparse representation. After adding noise, the sparse 

representation will be destroyed by the noise. To reconstruct the original signal, it can be 
achieved the noise removal by estimate the sparse representation of the clean signal. That is, 
when the signals join the additive white Gaussian noise, solving: 

 
2

0   2arg min|| || . . || ||s t y T       (6) 

 
It can estimate a clean spectrum sparse representation by solving equation (6) and then 

resume the reconstruction of the signal, thereby noise is removed. 
In order to make the reconstruct signal and observation signal maintain consistency, 

data fidelity constrains are introduced: 
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2

2
minarg yxx
x

  (7) 

 
Taking into account the sparse prior, based on sparse representation discussed in the 

previous section, signals for each segment have: 
 

  iiiii DxtsD   2

21
..minarg,  (8) 

 

Where i denotes the representation coefficient for each segment, i  means extract 

paragraph i  of signal, and i  is the error item.  

Combined (7) and (8), a unified maximum a posteriori probability function is formed as 
 

  iiii

N

i
i

xD
i DxtosubjectyxxD

i




 


2

21
1

2

2
,,
minarg,,  (9) 

 

Here i  is the regularization parameter. 

 
B. Algorithm Description 

The algorithm of this paper is divided into three main steps: 
Step 1: Add the independent zero-mean additive white Gaussian noise to clean signal. 
Step 2: Get sparse representation of the noisy spectrum by using Learning Dictionary 

which includes procedures are shown as follow: 
(1) Learn a dictionary from the observation noise signal as the optimal estimation of (9). Make 

the observation noise signal arbitrarily small section can better use a dictionary to sparse 
representation. Then we make the learned dictionary as the optimal estimate of the 
dictionary, fixed dictionary and then use the observation noise signal as the estimate of 
original signal.  

(2) Fix signal, segment sparse representation update x, obtain sparse coefficient. We rewrite 
(9) into 

 

  iiii

N

i
ii Dxtosubject

i




 


2

21
1

minarg  (10) 

 
This is the sparse coding process and we can use ℓ1-norm solution to solve the problem 

and to get sparse coefficients i . 

(3) With the updated coefficients fixed, we use the steepest descent method iterative update 
signal x. First, sub-signal by overlap area take average fusion get z: 

 
2

2

minarg  
i

ii
z

Dzz   (11) 

  
Then we use the steepest descent method to solve the convex optimization problem 

update x. 
 

2

2

2

2
minarg zxyxx
x

   (12) 

 
Here   is regularization parameter to control the influence of the two parts. 

(4) Repeat execution (3) (4) not jump out from the loop until some iterative conditions are 
satisfied. 

Step 3: Use OMP (Orthogonal Matching Pursuit) algorithm to find the optimal solution of 
formula (1). In this step, the sparse spectrum signal is reconstructed with noise removed. [17] 
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5. Experimental simulation 
Next, we simulate the performance of spectral de-noising based on compressed 

sensing, and compare with de-noising algorithm through the hard threshold wavelet filter. The 
experimental data are the results that obtained from Matlab platform. Because it is difficult to 
obtain pure spectral signal, we use simulated spectral signal in the experiment to evaluate the 
effect of various parameters. L—the length of the signal is 1024, as shown in Figure (1). We add 
additive white Gaussian noise at the signal–to–noise ratio at 20db to the original signal in the 
experiment to simulate measurement noise spectrum. Figure (2) is the spectral signal with 
additive white Gaussian noise. Figure (3) is the signal which is processed by hard threshold de-
noising via wavelet transform algorithm. Figure (4) is shown the reconstruction signal based on 
the theory of compressed sensing in this paper. 
 
 

 
 

Figure 1. Original Spectral Signal 

 
 

Figure 2 Original Spectral Signal with White Noise 
 
 

 
 

Figure 3. De-noising Spectral signal by 
hard threshold wavelet filter 

 
Figure 4. De-noising Spectral signal by CS 

 
 
The evaluation parameters of de-noising effect involves signal-to-noise ratio (SNR), root 

mean squared error (RMSE), waveform similarity (NCC). Defined as follows: 
 

 22

1 1

10 log
N N

n n n
n n

SNR f f s
 

    
 
   (7) 

 

 2

1

1 N

n n
n

RMSE s f
N 

   (8) 

 

2 2

1 1 1

N N N

n n n n
i n n

NCC s f s f
  

         
    
    (9) 
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In the formula (7) to (9), n = 1,2, ..., N, ns represent the original spectrum , nf represent 

the spectrum after de-noising, N is the number of bands. SNR is on direct proportional to the de-
noising effect; RMSE is on inversely proportional to the de-noising effect, and NCC is in the 
value interval of [-1,1] (-1 means waveform completely reverse after de-noising; 0 indicates that 
the two waveforms orthogonal, 1 shows they are completely the same) [18]. 

 
 

Table 1. Comparison Denoising Effects 
Parameters 

 
Methods 

 
SNR 

 
RMSE 

 
NCC 

Hard Thresholding 32.0965 0.0127 0.9809 

Compressed Sensing 33.7162 0.0117 0.9827 

 
 
As can be seen in Table 1, SNR is better in the way based on compressed sensing. 

Compared with de-noising by the wavelet fixed threshold filtering, the de-noising spectrum is 
smoother by using compressed sensing. 
 
 
6. Conclusion 

This paper describes the theory of compressed sensing, and applied it into the de-
noising of spectral signal. The comparative analysis of the experiment with the traditional 
wavelet threshold filtering method is shown in the paper. From the simulation results and other 
performance indicators, it is clear that the proposed method is better than wavelet threshold 
filtering method for spectral signal de-noising. We can get better evaluation parameters through 
compressed sensing. 
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