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Abstract 
The formal and empirical proof is that the ensemble of the learning models performs better than 

the single one. In order to construct the ensemble of the system of ordinary differential equations (ODEs), 
the two problems (diversity and accuracy of ODEs) are considered. In the paper, we estimate 
experimentally the model ensemble using multi-objective optimization. This paper presents a pareto 
optimal approach for identifying a family of the additive tree models which are used to reconstruct and 
identify the system of ordinary differential equations to predict the small-time scale traffic measurements 
data. We employ the tree-structure based evolution algorithm and particle swarm optimization (PSO) to 
evolve the architecture and the parameters of the additive tree model. The small-scale traffic 
measurements data is used to test ODE ensemble, and experimental results reveal that the proposed 
method is feasible and efficient for forecasting the time series.  
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1. Introduction 

The reasonable mathematical models based on the observed time series data are 
used to provide system analysis and prediction in every area [1-7]. Mathematical modeling is 
the art of translating problems from an application area into tractable mathematical 
formulations, whose theoretical and numerical analysis provides insight, answers, and 
guidance useful for the originating application [1]. The system of differential equations can 
describe the dynamic properties of a system, which changes with time quite well and predicts 
the future states of the system very conveniently. In our previous research [8], we used a 
hybrid evolutionary method to forecast the traffic measurements data, in which the tree-
structure based evolution algorithm and particle swarm optimization were employed to evolve 
the architecture and the parameters of the additive tree models for the system of ordinary 
differential equation identification. The result demonstrated that the ODE was a powerful 
predictor model in the discovery of sciential laws for dynamic data 
               The formal and empirical proof is that the ensemble of the learning models performs 
better, and more robust/reliableof than the single one. Moreover a single learner is impossible 
to achieve because of the fact that if a model does not perform well, it will not perform well 
whereas with an ensemble of models, there is always a chance that some subset of the 
models will work even if other are not performing well at all [9]. In order to construct the 
ensemble of the learning model, the two problems are considered. One is the diversity and the 
other is the accuracy of the learners that comprise the ensemble. In general one objective can 
just be improved at the expense of at least another objective. The aim is to search a trade-of of 
diversity and accuracy in a multi-objective evolutionary setup. Recently, many researches 
focused on the construction of ensemble using artificial neural networks (ANNs) called neuro-
ensemble. Kottathra et al firstly proposed that the neural network learning problem was a 
multiobjective problem. The two objectives were the mean square error and number of hidden 
units in the network, respectively [10]. But the author could not generate the pareto-optimal set. 
Wang et al. [11] used the multi-objective neural network approach to reconstruct the image. 
The authors used the weighted sum method to combine the two objectives which were the 
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smoothness of the image and the cross entropy real and reconstruction data. Abbass [12-14] 
proposed pareto-frontier differential evolution (PDE) and the memetic Pareto artificial neural 
network (MPANN) algorithm which were based on differential evolution for continuous 
optimization. The ensemble was formed from all networks on the Pareto frontier. Chandra et al. 
[9] proposed DIVACE (Diverse and Accurate Ensemble Learning Algorithm) which combined 
good ideas from Negative Correlation Learning (NCL) [15] and Memetic Pareto Artificial Neural 
Network (MPANN) [12]. The author formulated the ensemble learning problem as a multi-
objective aiming at finding a good trade-off between diversity and accuracy. 
 The additive tree model is a new representation scheme for the system identification 
especially the reconstruction of polynomials and the identification of linear/nonlinear systems 
proposed by us [16]. This model is robust, and easy to be analyzed by traditional techniques 
whose computational complexity is similar to the GP, so we use the additive tree models to 
identify and reconstruct the system of ordinary differential equation. In this paper, we propose 
a Pareto optimal approach for identifying a family of the additive tree models to predict the 
small-time scale traffic measurements data. In this approach, to achieve a trade-of of diversity 
and accuracy, we take in ideas from NCL algorithms which can be seen as one of the recent 
well-tested work and the negative correlation penalty function is used to quantify diversity as 
the second objective of the multi-objective optimization. We employ the tree structure based 
evolution algorithm and particle swarm optimization (PSO) to evolve the architecture and the 
parameters of the additive tree models. The partitioning [17] is used in the process of 
identification of structure of system. The ODEs in the pareto-optimal set by the approach are 
integrated to predict the traffic data. 
 
 
2. Research Method 
2.1. Representation of Additive Tree Model 

Two instruction/operator sets I0 and I1 are used to generate the additive tree in this 
approach (Figure 1). 
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Where F = {*, /, sin, cos, exp, rlog} and T = {x,R} are function and terminal set. +N, *, /, 

sin, cos, exp, rlog, x, and R denote the addition, multiplication, protected division ( x, y   R : 

when y = 0, x/0 = 1), sine, cosine, exponent, protected logarithm( x  R, x 0 : rlog(x) = 
log(abs(x)) and rlog(0) = 0), system inputs, and random constant number, taking N, 2, 2, 1, 1, 
1, 1, 0 and 0 arguments respectively [16]. N is an integer number (the maximum number of an 
ODE terms), I0 is the instruction set and the root node, and the instructions of other nodes are 
selected from the instruction set I1. Note that if the right-hand side of ODEs is the polynomial, 
the instruction set I1 can be defined as I1 = {*2, *3, ..., *n, x1, x2, ..., xn, R}.  

 
 

 
 

Figure 1. Example of ODEs in the Form of the Additive Tree Model 
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2.2. Parametes Optimization of Models using PSO 
According to the Figure 1, we check all the parameters contained in each equation, 

namely count their number ni (i=1, 2,...,N, N is the number of the equations). 
According to the number of parameters of each tree model, the particles are randomly 

generated initially. Each particle xi represents a potential solution. A swarm of particles moves 
through space; with the moving velocity of each particle represented by a velocity vector vi. At 
each step, each particle is evaluated and keeps track of its own best position, which is 
associated with the best fitness it has achieved so far in a vector Pbesti. The best position 
among all the particles is kept as Gbest [18, 19]. A new velocity for particle i is updated by: 

 

1 1 2 2( 1) ( ) ( ( )) ( ( ) ( ))i i i i iv t v t c r Pbest x t c r Gbest t x t                              (2) 

                               
Where c1 and c2 are positive constant and r1 and r2 are uniformly distributed random 

number in [0,1]. Based on the updated velocities, each particle changes its position according 
to the following equation: 

 

( 1) ( ) ( 1)i i ix t x t v t   
                                                                                     (3) 

 
2.3. Negative Correlation Learning 

The additive tree model is evolved to identify the ODE to predict the time series. The 
ODE ensemble, i.e. the additive tree model ensemble, not only need the accurate ODEs, but 
also need be uniformly distributed on the pareto optimal front, i.e. diversity is catered for. 
Remarkably, the optimization process should lead to convergence to the pareto optimal front 
while at the same time maintaining as diverse about distribution of solutions as possible on the 
pareto front [9]. So we take in ideas from NCL algorithms which can be seen as one of the 
recent well-tested work. NCL method treats the diversity as a separate objective and the 
negative correlation penalty function is used to quantify it. 

In NCL, for each ODE i in the ensemble, the accuracy is defined as followed. 
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Where N is the number of train data, 
i

ky  is the output of the ODE i at the time point k, and yk is 

the actual output. 
The negative correlation penalty function which is used as the second objective in 

NCL, is described as followed. Let N be the number of training data point and let there be M 
members in the ensemble. 
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                                          (5) 

 

Where ek is the output of the ensemble at the time point k, 
i

ky  is the output of the ODE i at the 

time point k. The above equation indicates the difference from the other members in the 
ensemble. 
 
2.4. Summary of Pareto Optimal Approach 

 Integrating with NCL method, to achieve a trade-of of diversity and accuracy, pareto 
additive tree model evolution (constructing ensemble of ODEs using multi-objective 
optimization) algorithm is described in detail as followed. 

(1) Create the initial population randomly (size M, structures and their corresponding 
parameters of the additive models); 

(2) Apply PSO to all the individuals in the population; 
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(3) Evaluate all the individuals in the population using the two objectives as described 
in subsection 2.3, and label the non-dominated set. In the phrase of the training, we take all the 
population as the ensemble, but for testing, we only use pareto set as the ensemble. 

(4) Delete the dominated individuals in the population. 
(5) To produce the child, we use the two operators until population size is M. 1) 

Crossover operator: select randomly the two non-dominated individuals from the population, 
and according to the predefined crossover probability Pc select one nonterminal node in the 
hidden layer for each additive tree randomly, and then swap the selected subtree. 2) Three 
mutation operators: (a) for a child, randomly select one terminal node in the tree and replace it 
with another terminal node, which is generated randomly; (b) randomly select one terminal 
node in the tree and replace it with another terminal node, which is generated randomly; (c) 
randomly select a function node in a tree and replace it with a terminal node selected in the  
set T. 

(6) Apply PSO to all the individuals in the population; 
(7) If maximum number of generations is reached or a satisfactory solution is found, 

then stop; otherwise go to step (3). Finally, we obtain the pareto set including the diverse and 
accuracy enough members to predict the time series. 

 

 

 
Figure 2. Actual Traffic Measurements Data 

 
 
3. Results and Analysis 

To test the effectiveness of the proposed method, we uses the TCP traffic data, which 
is published by the Lawrence Berkeley Laboratory. This traffic data contain an hour’s worth of 
all wide-area traffic between Digital Equipment Corporation and the rest of the world. The data 
package used in this paper is DEC-Pkt1, and the time stamps have millisecond  
precision (http://ita.ee.lbl.gov/).The traffic data aggregated with time bin 0.1s, that is the arrived 
package’s amount within the 0.1s time interval, are shown in Figure 2. 

 

 

 
Figure 3. Filtered Traffic Measurements Data 
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In general, the traffic measurements can be considered as a sum of a regular process 
and a stochastic part which are related to the high-frequency noise. The elimination of the 
noise may simplify the analyzed time series, so we apply the wavelet soft threshold noise 
reduction method to this data. The difference between the original time series and the filtered 
signal, corresponds to the noisy component. Figure 2 presents the original traffic series, Figure 
3 presents the corresponding filtered signal and Figure 4 presents the noisy component. Then 
the filtered traffic measurements data are normalized to the interval [0, 1] with following 
formula. 

 

min

max min

'
x x

x
x x





                                                                                                                (6) 

 

 
 

Figure 4. Noisy Component Figure 5. Pareto-optimal Set Obtained using 
our Approach 

 
 

The past research proves that the network traffic time series possess of the nonlinear 
nature [20]. The length of this traffic measurements data is 36000. The front 33000 data points 
are used as the training set and the last 3000 data points are used as the test set. The 
population size is set as 30, and the maximum number of generations is set as 50. The 
ordinary differential equation is solved using the approximate forth-order Runge-Kutta method. 
We use the 10 input variables to construct an ordinary differential equation model. Namely we 
use the front 10 variable to predict the current variable. The used instruction set I0 = {+2, +3, 
+4, +5, +6, +7, +8} and I1 = {∗, /, log, exp, rlog, sin, cos,X1, X2,X3,…,X10}. We use Equation (7) 
as the ensemble method of the predictors (where the αk are chosen to minimize the root mean 
square error between the ODE outputs and the desired values, and in this paper, the optimal 
weights of the ensemble predictor are optimized by using PSO algorithm). Through the 
experiment, we can obtain the Pareto optimal solutions for prediction network traffic 
measurements data whose two objective values are shown in Figure 5. The time series 
predicted by the ODEs ensembles is shown in Figure 6 along with that of the target. And the 
difference of actual network traffic time series data and the predicted ones is illustrated in 
Figure 7. From Figure 6 and Figure 7, we can clearly see that the system of ordinary 
differential equation ensembles using Pareto optimal approach can effectively predict the traffic 
data, and the result is well, the error is very low. And from Figure 8, which depicts the statistical 
histogram of the absolute difference between the actual time series and the predicted data by 
our method, it can be clearly seen that the prediction error of the ODE model ensemble to the 
traffic data mainly concentrates on the vicinity of zero. 

In our previous research [8], we have demonstrated that the system of ODE was more 
powerful predictor model compared with the feedforward neural network. To test the validity of 
the Pareto optimal approach, we employ the tree-structure based evolution algorithm and 
particle swarm optimization to evolve the architecture and the parameters of the additive tree 
models for identification of the system of ODE.We select the 10 better ODE models in the term 
of accuracy. The ensemble of 10 better ODE models (simple ensemble) are used to predict the 
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traffic data and the results are listed in Table 1 compared with our result. As evident, the 
prediction performance of ODE ensemble using pareto optimal approach is better. 

 

1
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N

k k
k

f f x


                                                                                                               (7) 

 

 
Figure 6. Comparision of Actual Time Series and Predicted Ones 

 
 

Table 1. The Results among our Method, Simple Ensemble and Single ODE 
 our pareto optimal simple 

ensemble 
single ODE 

RMSE for testing data 0.0087956 0.0119124 0.012454 

 
 

Figure 7. Errors of Actual Time Series and 
Predicted Ones 

Figure 8. The Statistical Histogram of the 
Predicted Errors 

 
 

4. Conclusion 
In this paper, a Pareto optimal approach for identifying a family of the additive tree 

models to predict the small-time scale traffic measurements data is proposed. In this approach, 
to achieve a trade-of of diversity and accuracy, the negative correlation penalty function is 
used to quantify diversity as the second objective of the multi-objective optimization. Tree-
structure based evolution algorithm and particle swarm optimization are employed to evolve 
the architecture and the parameters of the additive tree models for system of ordinary 
differential equation identification. The experiment results clearly illustrate that the ODE model 
ensemble using Pareto optimal approach can effectively predict the traffic measurements data, 
the prediction accuracy is well, the prediction error mainly concentrates on the vicinity of zero 
and the Pareto optimal approach we proposed is very effective by comparison. 
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