
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.1, January 2014, pp. 157 ~ 166
DOI: http://dx.doi.org/10.11591/telkomnika.v12i1.3901 157

Received May 23, 2013; Revised Aug 8, 2013; Accepted Aug 26, 2013

Automatic Building Process of Self-Closed Modified
N-tree

Yibing Liu, Xiaodong Zhu, Ying Chen, Yu Li, Ning Deng
College of Software &College of Computer Science of Jilin University

Jilin Univeristy, China
*Corresponding author, e-mail: zhuxd@jlu.edu.cn

Abstract
Some features of prevailed workflow like Petri net and Grid workflow make them cannot adapt to

the dynamic operation. So, we proposed a modified N-tree model to control a workflow. Modified N-tree
model can remedy some problems exist in these prevailed workflow models. Firstly, we approve the
proposed modified N-tree model is self-closed. This feature makes sure that this workflow can accomplish
its tasks, when we change nodes of a well-running modified N-tree workflow before or while its execution.
It is the prerequisite of dynamic characteristics of modified N-tree model. And, then we give a method to
change this tree dynamically based on the self-closed merit. Finally, based on the dynamic characteristics
of this model, we give a method to build on this N-tree workflow model automatically by using left root (LR)
analysis method proposed by Mr. D.Knuth. This is the most important performance of this model.

Keywords: Modified N-tree model; workflow; automatically process; state machine

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
The workflow management technology is one of emerging technologies in computer

application domain in recent years, which had achieved the enhancement production
organization level and the efficiency goal, and widely applied to various fields through the
process integration. A perfect product data management (PDM) system can keep track of the
masses of data and information during the entire lifecycle of product development [1]. It also
ensures that the right information is available for the right person at the right time and in the
right format. Such as the nodes of workflow, the product-related information controlled by
system includes part definitions and other design data, engineering drawings, product
specifications, bills of materials, failure report etc.

Nowadays, the enterprises want to use this new technology to rein the process of whole
producing. This process includes the purchasing of source, the producing of products,
transmitting of information and so on. In different enterprise, the process is always different,
even in the same enterprise for different processes of producing. So it gives us a problem that
the statically traditional workflow cannot adapt to their needs. [1-4]

We need to define a dynamic workflow model to tackle it. In some previous researches,
people mostly focus on Petri net and Grid workflow primarily. They all have some prominent
features to build on a workflow. Petri net is distributed, concurrent and asynchronous [5,6].
While Grid workflow has the following three features: distribution, service interaction and
dynamic. Especially the grid workflow, it can be applied into web service. However, there are
two problems exist in these models:

(1) Since the Grid workflow and Petri net have complex definition and attributes, their
dynamic control process are always complicated.

(2) People put more efforts on massive material tackling, but they ignore the
automatically building. To a very complex productive process, the workflow will be very big. If
we build on the workflow model manually, some mistakes may be leaved in this process.

To solve the first problem, we need to build on a new workflow model. Our former
research has shows that a well defined N-tree model can adapt to the workflow perfectly and
gives a process to build on this tree. To simplify the dynamic control process, we refine the N-
tree workflow model and give a modified N-tree model to build on workflow. Then approve that
modified N-tree model have dynamic property. It is valid for any changes of a consequently

 ISSN: 2302-4046

TELKOMNIKA Vol. 12, No. 1, January 2014: 157 – 166

158

producing-workflow. For any changes, adding and deleting sub-trees, of a well-defined
workflow, especially when it was processing, this procedure can lead to a result. It means when
the workflow have been commenced we can add and delete any sub-tree, and this will lead to a
result. An unqualified result is better than null result in productive process, because we can
renovate this unqualified product by modifying this workflow.

For a complex productive process, we need to build on a complicated workflow to
control this procedure. Until now, most workflow procedures were built manually, and some
unrecognized blunders may happen in this procedure. To restore these problems will lead to
extra expenses and delay the work in process. So an automatically building process is
necessary to avoid unrecognized errors.

2. Modified Definition of N-tree Model

A complex model will lead a complicated dynamic control procedure. In order to prove
the dynamic procedure we need an improved and modified definition of N-tree model. Proposed
modified N-tree has the following merit:

(1) It is very simple and it only has node type, node model, and node state.
(2) By canceling some non-related attributes of previous definition, we can make the

self-closed proving process more clearly.
Workflow unit mode has defined the rules for sequences of executing tasks in the

processes of management. In this paper, each task is depicted as a node in N-tree model and
every unit mode consists of one or more nodes. The node of a tree should have different types,
processing models and states.

2.1. Types of Node

In order to define a modified N-tree, we need two types of node show in table 1.

2.2. Processing models of Parent node

In the following table 2, we will give four needed processing models of parent node.We
will give some examples in Fig. 1, so we can see four processing models more clearly.

Table 1. Types of Node
Type Meaning Description

Rn Parent

Rn can be parent node
and child node, but it
cannot be a leaf node
of any tree. It is just
used to control the
skipping between its
child nodes, and don’t
contain the practical
producing process.

lf Leaf

Just can be a leaf node
of any tree. All
vocational works
conserved in this kind
of nodes.

Table 2. Processing Models of Parent Node
Model Meaning Description

S Sequence
If the model is sequence, its
child nodes will be executed by
their order.

L Loop

If the model is loop, its child
node was executed by order.
After that, if the loop conditions
are effective, its child nodes
should be executed by order
again.

B Branch
If the model is branch, only one
of its child nodes will be
executed

P Parallel
If the model is parallel, all of its
child nodes will be executed at
the same time

2.3. States of Parent and Leaf node

Workflow model must have recorded each state of nodes to achieve automatic
executing. Table 3shows all kinds of states we need in this paper.

With the definition of the node and details showing in three tables, we can see that the
child nodes of one parent node are unordered. So we can give definition of a modified N-tree.

An N-tree can be expressed as T=(root, R, L, Cr, Clf). Root means the root node, it just
contains one element; R is a collection of parent nodes; L is a collection of leaf node; Cr collects
the relationship between parent node; Clf collects the relationship between parent node and leaf
node.

TELKOMNIKA ISSN: 2302-4046

Automatic Building Process of Self-Closed Modified N-tree (Xiaodong Zhu)

159

Figure 1. Examples of four processing
models

Table 3. States of Node
State Meaning Description

E Executing
This work have
been commenced

N Non-executing

This work cannot
be executed, since
the condition were
not fulfilled

W Wait
Wait the judgment
of conditions

F Finish
The work has
been executed

3. Merits of Modified N-tree Workflow

With the development of modern manufacture, one factory can produce different kind of
products and these goods produced by the same enterprise may be very similar. If we use a
static workflow, we need to design many different workflow procedures to come out different
products. It will be a huge cost, and also very complex for managers. Compared with these
shortages in static workflow, the dynamic workflow can be easily reused. One workflow
procedure can be easily reused by other similar products through a bit of changes. Before we
give a dynamic method to change the N-tree model, we need to approve an essential merit—N-
tree model is self-closed.

3.1. Modified N-tree is self-closed

A dynamic workflow model has many advantages, however, it has problem at the same.
When one changes the workflow procedure, he can’t make sure the workflow procedure lead to
a determined result. To solve this problem, we need to approve that this N-tree workflow model
is self-closed.

An N-tree is self-closed means to any tree, its root node, a parent type node, can
change from F state to E state. A modified N-tree workflow can by showed as T=(R0,
(R0,R1,…,Rn), (lf1,lf2,…, lfk), Cr, Clf). We define three functions in this tree as:

n)i(0)(RS i tate (1)

this equation means: the state of Ri node;

k)i(0)(lf i State (2)

this equation means the state of lfi node;

n)i(0)(Ri Type (3)

this equation means the type of Ri node.
Then the following four steps approve that the N-tree workflow model is self-closed.
Step 1. We approve that an N-tree, which only has one parent node as its root and

several leaf nodes as its child node, is self-closed. This tree can be shown as T=(R, (R), (lf1, lf2,
…, lfk), Cr, Clf), Cr=∅, Clf=(Rlf1lf2…lfk)

(1)Type(R)= S or P, when State(R)=E, we set state(lfi)=W, (0<=i<=k), then set State(lfi)
and execute these leaf nodes by their order. When all leaf nodes’ state become F, we set
State(R)=F.

(2)Type(R)=L, when State(R)=E, we set State(lfi)=W, (0<=i<=k), then set State(lfi) and
execute these leaf nodes by their order. When all leaf nodes’ state become F, we set
State(R)=W. If the conditions are fulfilled, set State(R)=F, else execute (2) again.

 ISSN: 2302-4046

TELKOMNIKA Vol. 12, No. 1, January 2014: 157 – 166

160

(3)Type(R)=B, when State(R)=W, based on the conditions choice lfi from (lf1,…,lfk) and
set State(lfi)=W. Then set State(R)=E, execute lfi node. Set State(R)=F, after it have been finish.

Step 2. We construct a tree with one root node R, and the R just has parent node,
R1,R2…,Rn, as its child node. Ri (1<=i<=n) just have leaf node to be their child nodes. We
approve this tree is self-closed. We can show the tree defined above as T=(R,(R, R1,…, Rn), (lf1,
lf2, …, lfk), Cr, Cl)

(1)Type(R)=S or P, until its all child nodes’ state become F, we can set State(R)=F.
Since each of its child nodes belongs to one situation in 1, so its child nodes’ state can change
to F from E. Hence the state of R can change from E to F.

(2) Type(R)=L, until its all child nodes’ state become F, we can set State(R)=W. Based
on the conditions, if all conditions are fulfilled, this step is finished; else, set State(R)=E, change
its child nodes’ states become W and execute them by their order. Since each of its child nodes
belongs to one situation in 1, so its child nodes’ state can change to F from E. When the state of
all child nodes become F, set State(R)=W, repeat step (2) again.

(3) Type(R)=B, State(R)=E, based on the conditions choice one child Ri (0<=i<=n) and
set State(Ri)=W. Then set State(R)=E and execute Ri node, since each of its child nodes
belongs to one situation in 1, so its child nodes’ state can change to F from E. Then set
State(R)=F.

Step 3. We construct a tree with one root node R, and R has parent nodes and leaf
nodes, R1,R2,…,Rn, as its children. Ri(1<=i<=n) only has leaf nodes as its children. We approve
this tree is self-closed. This tree can be shown as T=(R, (R, R1, … , Rn) , (lf1, lf2, … , lfk), Cr, Cl),
Type(R)= S or P or L or B. If lfih, … , lfik (|h-k|>=1) are contiguous, add one child node Ri which
is parent to R and set State(Ri)=State(R). We let lfih, … ,lfik point to Ri, then we get a new tree.
From Step 2 we can know that if we set State(R)=E, its state can change to F finally.

Step 4. Based on above mentioned three steps, we can construct a tree and it is self-
closed.

From the above four step, we can get three rules of self-closed merit.
Rule 1: R is root node of tree T, and it has child node Rm, … , Rn. We treat its child

nodes as root of sub-tree Ti (n<= I <=m). When all of these sub-trees can be self-close, then
tree T is self-closed.

Rule 2: Any tree can be self-closed.
Rule 3: A tree T has parent node R. This node has leaf node lf1,…,lfk. Type(R)= S or P

or L or B. If lfih, … , lfik (|h-k|>=1) are contiguous, add one child node Ri which is parent to R and
set State(Ri)=State(R). We let lfih, … ,lfik point to Ri, then we get a new tree. From Step 2 we can
know that if we set State(R)=E, its state can change to F finally.

3.2. Dynamical change method

To change a workflow procedure of one product to another, we may need to delete
some redundant procedures and add other insufficient processes. So the dynamic procedure
should include dynamically adding and deleting.

(1) Dynamically adding:
The following steps are dynamical adding:
Step 1. Ri is a parent node of a tree T. Let Ri become root of tree Ti, then Ti=(Ri, (Ri, Ri1,

… , Rij), (lfi1, lfi2, …, lfik), Cri, Cli). Ri has child nodes Rin, …. , Rim and lfii, ..., lfij. Based on Rule 1,
we treat Rim, … , Rin as a root of sub-tree Tk (m<= k <=n), and based on Rule 3, we can get that
tree is self-closed.

Step 2. Tj=(Rj, (Rj, Rj1, … , Rjh), (lfj1, lfj2, … , lfjm), Crj, Clj), let Rj becom a child node of Ri

node of tree Ti. Then we get a new tree Tij= (Ri, (Ri, Ri, Ri1, … , Rij, Rj, Rj1, Rj2, … , Rjh), (lfi1, … ,
lfik, lfj1, … , lfjm), Cri∪Crj, Cli ∪Clj)

Step 3. Based on Rule 2 we can get that Rj can change to F from E. So tree Tj is self-
closed.

Step 4. Since the sub-trees of Ti which the root node is child nodes of Ri can be self-
closed, and the tree Tj is self-closed, so based on Rule 1 we can get that Tij is self-closed.

(2) Dynamically deleting:
The following steps are dynamical deleting:
Step 1. Ri is a parent node of a tree T. Let Ri become root of tree Ti, then Ti=(Ri, (Ri, Ri1,

… , Rij), (lfi1, lfi2, …, lfik), Cri, Cli). Ri has child nodes Rin, …. , Rim and lfii, ..., lfij. Based on Rule 1,

TELKOMNIKA ISSN: 2302-4046

Automatic Building Process of Self-Closed Modified N-tree (Xiaodong Zhu)

161

we treat Rim, … , Rin as a root of sub-tree Tk (m<= k <=n), and based on Rule 3, we can get that
tree is self-closed.

Step 2. Delete a child node of Ri, named Rik(i<= k <=j), then we get a new tree Tik.
Based on Rule 2 the sub-trees which the root node is the other child node of Ri, are self-closed.
Based on Rule 1, tree Tik is self-closed.

Step 3. Based on Rule 3, delete any leaf node of Ti , the tree Ti is still self-closed.

4. Error Tackling

In any workflow, an error may happen because of different factors, such the lack of
finance or materials. Based on the previous experience, the factories should know which reason
lead to the problem. So we give the Error tackling function to solve the problems.

We define WF=(T, E) to manifest a workflow model. In this model, T stands for the tree
model defined before. E = (e1, e2, e3, … , ek) stands for a collection of errors tackling functions
of leaf nodes in T. The errors may happen in the Leaf node of T. Since we need to apply this
tree model to supply chain, we must tackle errors in workflow. For a supply chain, the error is
because of the shortage of materials.

(1) WF=(T, E), T=(R0, (R0, R1, … , Rn), (lf1, lf2, … , lfk), Cr, Clf), E=(e1, e2, … , ek)
(2) Ri is a parent node of tree and it has leaf node lfi, when we tackle the lfi and an error

happened, we use ei to tackle this problem.

5. Automatically Build Up A Modified N-tree Workflow

We want to give a method to come true that just give some logical relationship and
necessary parent and leaf nodes to build on a N-tree workflow automatically. We refer the LR(k)
analysis method which has been defined by D.Knuth in 1965. We need to build on the state
machine, and then construct action form and goto form. After that we will give a method to
construct a N-tree workflow automatically.

Definition 1 Let Aαβ and A∈R, α,β∈R∪L, then we call Rα·β a program of LR
Definition 2 Let IS become a program of LR, we call IS(x) is project of IS respect to x.

)}(L ,I

XA |X{AIS(x)

RXS

 (4)

Definition 3 Let IS become a program of LR, we call CLOSURE(IS) the collection of the

closure of IS.

}B (IS),

A |{BIS(IS)C

CLOSUREB

LOSURE π
 (5)

Definition 4 Let IS become a program of LR, X belong to L∪R, then we define GO(IS,

X) as

(x))CLOSURE(ISX)(IS, GO (6)

The LR analysis method to build on a modified N-tree workflow model has three steps:

(1) building on a state machine; (2) building on goto and action form; (3) building on the N-tree
workflow.

5.1. Build up State Machine

The state machine is the first step of LR analysis. It gives people a guidance to know
the transference of node at different state, clearly. Only based on the state machine, we can
build up the goto and action form.

(1) Build up initializing program collection ISS={CLOSURE({Z·S#})}. We create a new
relationship ZS. It has the same meaning with the formula in Cr, but don’t belong to neither Cr
nor Clf. S is root node.

 ISSN: 2302-4046

TELKOMNIKA Vol. 12, No. 1, January 2014: 157 – 166

162

(2) To the program IS and X∈L∪R∪{#} in ISS, let ISj=GO(ISj, X). If j is not empty and
don’t belong to ISS, then ISS=ISS∪ISj.

(3) Repeat step 2, until ISS is convergent.
(4) To the program ISi and X∈L∪R∪{#} in ISS, let ISj=Go(ISj, X). If ISj is not empty

then:

i
X

i ISS I (7)

5.2. Process of building up analysis form of state macnine

The analysis form contains action form and goto form. The action form ensure when we
input a(∈L), then what we should do the next. The goto form make sure when input A(∈R),
then what we should do the next.

(1) If Aa·aβ, and GO(ISk, a)=ISi, a∈L, then action(ISk, a)=Si;
(2) If Aα·∈ISk, then to any a∈L∪{#}, let action (ISk, a)=Rj (We give each formula a

number in R， j is the number of one formula in R). The number of Aα is j in L;
(3) If Zα·∈ISk, and Z is the root node, then action(ISk, #)=Accept;
(4) If GO(ISk, A)=ISi, A∈R, then goto(ISk, A)=i.

Use the analysis form to construct a tree automatically
We set (State Stack, Symbol Stack, Task Stack) to control the procedure. At the

beginning (State Stack , Symbol Stack, Task Stack) should be: (S0, ∅,task)
(1) If the current (State Stack , Symbol Stack, Task Stack) becomes (S0S1…Sn,

X1X2…Xn, aiaj…ak), and action(Sn, ai)=Sj, ai∈L, then ai add into symbol stack and add Sj into
state stack. Then the (State Stack , Symbol Stack, Task Stack) becomes: (S0S1…SnSj,
X1X2…Xn, ai, aj…ak)

(2) If the current (State Stack, Symbol Stack, Task Stack) becomes: (S0S1…Sn,
X1X2…Xn, aiaj…ak), and action(ISn, a)=Rj, a∈L∪{#}, then according to the jth formula in R, we
assume this formula is Aα, k=|α| (α=Xn-k+1… Xn), then the (State Stack , Symbol Stack, Task
Stack) becomes: (S0S1…Sn-k, X1X2…Xn-kA, aiaj…ak), and S=goto(Sn-k , A).

After this step, we let the symbols in α point to Rj which is parent node in N-tree model.
(3) If the first state in the state stack is Si, while the current task is # in the task stack,

and action(Si, #)=Accept, then the analysis finished. The process of building N-tree workflow
model has finished.

(4) If the first state in the state stack is Si, while the current task is a in the task stack,
and action(Si, a)=Error or empty, then the analysis procedure is wrong.

5.3. Example of automatically building procedure

In chapter Error Tackling, we have talked about the process of building up an N-tree
workflow model automatically. Now we will give an example to show you the process more
clearly.

The N-tree is : (S, (S, R1, R2, R3), (e1, e2, e3, e4, e5, e6), ∅,(SR1e1, R1R2e2R3,
R3e3e4, R2e5e6)) And we mark:

SR1e1 [1],
R1R2e2R3[2],
R3e3e4[3],
R2e5e6[4],
Where [i] (i=1,...,4) means the number of formula.
The state machine and analysis form of this tree show in following Figure 2 and Table 4.
With the help of state machine and analysis form we can construct the tree. The

procedure to construct a tree shows in Table 5.

TELKOMNIKA ISSN: 2302-4046

Automatic Building Process of Self-Closed Modified N-tree (Xiaodong Zhu)

163

Table 4. Action and Goto Form
 Action Goto

 e1 e2 e3 e4 e5 e6 # R1 R2 R3

S0 S4 1 3

S1 S2

S2 Accept

S3 S5

S4 S9

S5 S7 6

S6 R2

S7 S8

S8 R3

S9 R4

Figure 2. State Machine of Four Processing

models

Finally, we can build on a N-tree with the construction form. The result shows in

Figure 3.
This example shows, with the steps in section IV, a modified N-tree workflow model can

be automatically building. This method can be useful especially when we build on a massive
and complex producing workflow.

Table 5. Constructing Procedure

State Stack Symbol Stack Task Stack Goto

0 E5e6e2e3e4e1# 4

04 e5 e6e2e3e4e1# 9

049 e5e6 e2e3e4e1# 3

03 R2 e2e3e4e1# 5

035 R2e2 e3e4e1# 7
0357 R2e2e3 e4e1# 8

03578 R2e2e3e4 e1# 6
0356 R2e2R3 e1# 1

01 R1 e1# 2
012 R1e1 e1# Accept

Figure 3. Automatically Built N-tree Workflow

6. Discrepancy between Petri-net, N-tree Model and Modified N-tree Model

Compared with the Petri net and N-tree model, the Modified N-tree workflow has the
following prominent features:

(1) The modified N-tree workflow is very simple.
In the N-tree workflow model, the definition of node is very complicated. We show it in

Table 6. From this table, we can get that nodes in N-tree model workflow is very complicated. It
is not easy to control this whole tree, since any mistake in the execution process may lead to
blunders. So in the Modified N-tree model, we simplify the definition of node, for its the main
reason leading to errors. Our Modified N-tree workflow model just needs to define the states,
processing models and types. These three elements are the most essential and indispensable
attributes for any N-tree workflow. With the simplified definition of nodes, people just need to
control three variables, and this simplification reduces the probability of mistakes.

(2) A well executed Modified N-tree workflow will have not deadlock, after deleting or
adding of tree nodes.

 ISSN: 2302-4046

TELKOMNIKA Vol. 12, No. 1, January 2014: 157 – 166

164

In chapter Merits of modified N-tree workflow, we prove that the Modified N-tree is self-
closed, this merit shows that no matter when we change a workflow, before or when its running,
we can get a result. And also, in a tree, there is not cycle. It means that a tree has not cycle
composed by Parent nodes. Furthermore, any errors can be detected by Error Tackling
functions. So I think it’s safe to say that in the Modified N-tree workflow, there is not deadlock.

While in the Petri-net, the probability of deadlock is very big, because most Petri-net
workflows have one or more cycles. With the increase of the number of cycles, the probability of
deadlock is also increasing. Although we can use some special means to find and transact
these mistakes, but it will increase the cost. I will give an example of Petri-net workflow with one
deadlock in the following.

We show a workflow based on Petri-net to produce commodities in Figure 4. In this
workflow, we can see a cycle: GIHJG. This process can be used to provide necessary
materials. When it cannot provide enough materials, this cycle will be deadlock.

Table 6. Attribute of Workflow node

Attribute of

node
Meaning Remark

Sequence
The sequence
of execution

The sequence of execution of
nodes in the same level

Name Node name
The name of process of PDM
system

Type Task type Shown in table 1

is Executing
State of

execution
Shown in table 3

Application
Interface of
application

Animating the PDM system in the
corresponding process
management application module

Parent Parent node
Especially, when a node is root
node, its attribute is null

Cycle
Period of

executing a
node

Supervising the execution time in
workflow, and describing work
schedule

Figure 4. A Example of Petri-net Workflow

Compared with Petri net workflow model, we give a workflow model, to show how we

can tackle the same problem by a low-cost function, in Figure 5. In this workflow, State of A, B,
C, D, F is, by order: sequence, branch, loop, parallel and sequence. The E node stands for end.
The dead lock may happen in the C node when the loop cannot be terminated. In the chapter
Error Tackling, we define the Error Tackling function, we set this function in node C, and make
sure this process must can be terminated after cycle of 50 times which bigger than the
estimated values.

 (3) The Modified N-tree workflow is self-closed.
For the well executed Modified N-tree workflow, after we change the node, we can

make sure that this workflow can produce a result, as we proved in chapter Merits of modified
N-tree workflow. But Grid workflow and Petri net workflow cannot keep the practicability after
change.

In the Figure 6, we change the Modified N-tree workflow at Figure 5, deleting node F,
and adding a new task node j. Based on contents in chapter Merits of modified N-tree workflow,
this tree can be accomplished and lead to a result. Even some errors, such as the condition
cannot be met by two of these tasks, happened, we can set an Error Tackling function to solve
them by setting a Clock to trigger forced termination and feedback this error.

TELKOMNIKA ISSN: 2302-4046

Automatic Building Process of Self-Closed Modified N-tree (Xiaodong Zhu)

165

Figure 5. A Example of Modified N-tree

Workflow

Figure 6. A Example of Modified N-tree
Workflow

 In Figure 7, we change the Petri net workflow at Figure 4, deleting G, I, H, J. After this

change, the Petri net have not efficient mechanism to response to this change.

Figure 7. A Example of Grid Workflow

7. Conclusion

In the study, we define a modified of N-tree workflow model and give a detailed process
to build on this workflow model. We prove some rules about modified N-tree workflow model.
We make sure that workflow tree can work out a result no matter what changes happened.
Moreover, we refer the LR(k) analysis method to build on a tree automatically, but there is some
limitations to the relationship in Cr and Clf. If these limitations were violated, the tree will not be
built. So, in the future research, we tend to prove that these limitations can be fulfilled, or if not,

 ISSN: 2302-4046

TELKOMNIKA Vol. 12, No. 1, January 2014: 157 – 166

166

we prefer to give more method similar to the above one to construct the N-tree workflow model
automatically.

References
[1] Fei He, Yuan-ning Liu, Jing Liu, Ying Chen. Workflow Model Design Based on N-Tree for Process

Management in PDM. Advanced Material Research. 2011; 268-270: 76-81.
[2] Zeng Qing-hua. The Dynamic Modification Method of Adapt Workflow Model. In Proceedings of 2011

3rd IEEE International Conference on Information Management and Engineering. 2011; 06: 640-644.
[3] Myung-Ju Shin, Sin-Wung Kim, Hye-Jin Jeong, Yong-Sun Kim. Data Modeling of Workflow-XML

Resource Model. In Proceedings of 2012 3rd International Conference on e-Education,e-Business.
2012: 48-52.

[4] Sadiq Shazia W, Orlowska Maria, Saqin Wasim. Pockets of flexibility in workflow specifications.
Information Systems. 2005; 30: 349-378.

[5] Koci Radek, Mazal Zdenek, Zboril Frantisek, Janousek Vladimir. Object-oriented design of petri nets
modeling tools. In Proceedings of the 7th International Conference on Intelligent Systems Design and
Applications. 2007: 15-20.

[6] Yang Guo-jun, Zheng Ying, Tang Jian, KeShan. The Design and Realization of Workflow Engine
based on the Relational Data Model. International Conference on Computer Application and System
Modeling. 2010; 8: V8408-V8411.

[7] Hong Jiang, Xiang-qian Ding. Modeling of Hierarchical Petri Net-Based Workflow. International
Conference on Control and Industrial Engineering. 2011; 1: 113-116.

[8] Qiu ZM, Wong YS. Dynamic workflow change in PDM systems. Computer in Industry. 2007; 58: 453-
463.

[9] Sonmez Ozan, Yigitbasi Nezih, Abrishami Saeid, Losup Alexandru, Epema Dick. Performance
analysis of dynamic workflow scheduling in multicluster grids. In Proceedings of the 19th ACM
International Symposium on High Performance Distributing Computing. 2010: 49-60.

[10] Sun Ping, Jiang Chang-jun, Li Xiang-Mei. Workflow process analysis responding to structural
changes. Journal of System Simulation. 2008; 20(7): 1856-1863.

[11] Zhen Ling, Cui Shuo, Yue Dong, Zhang Xiaoliang. A workflow structure verification method based on
Warshall algorithm. In Proceedings of 2011 7th International Conference on Natural Computation.
2011; 4: 1946-1949.

[12] Zhang Liang, Yao Shu-Zhen. Research on workflow patterens based on Petri nets. Computer
Integrated Manufacturing Systems. 2006; 12(1): 54-58, [jisuanji jichengzhizao xitong]. 2006; 12(1): 54-
58.

[13] Guang Deng. A kind of lidar application grid based on eScience’s view. TELKOMNIKA Indonesian
Journal of Electrical Engineering. 2012; 10(5): 1147-1150.

[14] Xue Sheng Jun. Scheduling workflow in cloud computing based on hybrid particle swarm algorithm.
TELKOMNIKA Indonesian Journal of Electrical Engineering. 2012; 10(7): 1560-1566.

