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Abstract 
MapReduce is an emerging programming paradigm and an associated implementation for 

processing and generating big data which has been widely applied in data-intensive systems. In cloud 
environment, node and task failure is no longer accidental but a common feature of large-scale systems. In 
MapReduce framework, although the rescheduling based fault-tolerant method is simple to implement, it 
failed to fully consider the location of distributed data, the computation and storage overhead. Thus, a 
single node failure will increase the completion time dramatically. In this paper, a Checkpoint and 
Replication Oriented Fault Tolerant scheduling algorithm (CROFT) is proposed, which takes both task and 
node failure into consideration. Preliminary experiments show that with less storage and network 
overhead. CROFT will significantly reduce the completion time at failure time, and the overall performance 
of MapReduce can be improved at least over 30% than original mechanism in Hadoop. 
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1. Introduction 
MapReduce is an emerging programming paradigm that has gained more and more 

popularity due to its ability in supporting complex tasks execution in a large-scale and scalable 
way. In large-scale distributed computing environment such as cloud environment, node and 
task failure is no longer exceptional but a common feature. Research discovered that failure has 
a significant impact on system performance in large-scale systems [1]. Every year in a cluster, 
1% to 5% hard disks will be scrapped, up to 20 racks and 3 routers will go down, and servers 
will go down at least twice with 2% to 4% scrap rate each year. It shows that failure also occurs 
daily even in a distributed system with up to ten thousand super reliable servers (MTBF of 30 
years) [2]. For the cloud environment consisting of a large number of inexpensive computers, 
node and task failure become a more frequent and widespread problem, which must be handled 
by some effective fault tolerant method. 

The MapReduce based programs generate a lot of intermediate data, which is critical 
for completion of the job. This paper views failover of intermediate data as a necessary 
component of MapReduce framework, specifically targeting and minimizing the effect of tasks 
and nodes failure on performance metrics such as job completion time. We propose new design 
techniques for a new fault tolerant mechanism called CROFT (Checkpoint and Replication 
Oriented Fault Tolerant Mechanism for MapReduce Framework), implement these techniques 
within Hadoop, and experimentally evaluate the resulting system.  
 
 
2. Related Work 

MapReduce is a programming model and an associated implementation for processing 
and generating big data [3]. It is initially designed for parallel processing of big data using mass 
cheap server clusters, and put scalability and system availability on the prior position. Within 
Google Company, more than 20PB of data is processed every day and 400PB every month. 
Yahoo implemented Hadoop - an open source MapReduce framework. Facebook uses it to 
process data and generate reports, while Amazon Company uses elastic MapReduce 
framework for large amounts of data-intensive tasks [4]. MapReduce has the obvious advantage 
over other programming models like MPI, and a single task failure does not affect the execution 
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of other tasks because of the independence between Mapper and Reducer task. It has drawn a 
lot of attention for its benefits in simple programming, data distribution and fault tolerance, which 
has been widely used in many areas, like data mining, machine learning, information Retrieval 
and others. 

In a report given in 2006, Google Company pointed out that in a cloud environment with 
averagely 268 nodes, each MapReduce job is accompanied with failure of five nodes [5]. On the 
other hand, large number of data is usually accompanied with data inconsistency or even data 
loss, and incorrect data record will result in task failure or even failure of the entire job. 
MapReduce uses a rescheduling based fault-tolerant mechanism to ensure the correct 
execution of the failed task. But in the scenario of node failure, all the completed tasks on the 
failed node will start over, which shows severely reduced efficiency. And Rescheduling failed to 
fully consider the location of distributed data, the computation and storage overhead. And when 
Hadoop's node failure detection timeout is 10 minutes (the default), a single failure will cause at 
least 50% increase in completion time [6]. If each input split contains one bad record in the 
middle, the entire MapReduce job will have a 100% runtime overhead, which is not acceptable 
for those users with rigorous SLA requirements to process the MapReduce jobs. So it clearly 
shows the need for more effective algorithms that allow for reducing delays caused by these 
failures [7]. 

In [8], tests show that in seven types of cluster with different MTBF (Mean Time 
between Failure), MapReduce job with three replicas can achieve better performance than that 
with one replica, because more replicas can reduce the chances of data migration when 
rescheduling jobs at failure time. [9] discussed an alternative fault tolerance scheme - the state 
based Stream MapReduce (SMR), which is suitable for handling continuous data streaming 
applications with real-time requirements, such as financial and stock data. The key feature is a 
low-overhead deterministic execution which reduces the amount of persistently stored 
information. [10] proposed a method to replicate intermediate data to the reducer, but this 
method will produce a large number of I/O operations, and consume a lot of network bandwidth, 
and only supports recovery for single node failure. In [11] the author proposed a method to 
improve performance of fault tolerance by replicating data copies. In [12] author presented an 
intelligent scheduling system for web service, which considers both the requirements of different 
service requests and the circumstances of the computing infrastructure which consists of 
various resources. [13] described the priority of fairness, efficiency and the Balance between 
benefit and fairness respectively, then recompiled the CloudSim and simulate the three task 
scheduling algorithms above on the basis of extended CloudSim respectively. 

We proposed a Checkpoint and Replication Oriented Fault Tolerant scheduling 
algorithm (CROFT), which can significantly reduce the average completion time of jobs. Unlike 
traditional MapReduce fault tolerance mechanism, this algorithm will reschedule tasks on the 
failed node to another available node without starting over again, but reconstruct intermediate 
results quickly from the checkpoint file. Under no failure, CROFT turns out to have little impact 
on the performance of Hadoop. The preliminary experiment shows that under a failure, CROFT 
outperforms Hadoop with a 30% increasing of performance and incurs up to 7% overhead 
compared to Hadoop. 
 
 
3. Algorithms 
3.1. MapReduce Programming Model 

In MapReduce programming model, the calculation process is decomposed into two 
main phases, namely the Mapper stage and Reducer stage. For one piece of input data, the 
Reducer stage only starts when the Mapper stage is completed. A MapReduce job includes M 
Mapper tasks and R Reducer tasks. In Mapper stage, multiple Mapper tasks run in parallel, and 
one Mapper task will read an input split and perform a Mapper function, where Mapper tasks are 
independent from each other. Mapper tasks will produce a large number of intermediate results 
in local storage. Before Reducer function is called, the system will classify the generated 
intermediate result and shuffle result with the same key to Reducers. A reducer task will execute 
a reduce function and generates an output file, and eventually a MapReduce job will generate R 
output files which could be merged to get the final result. When programming, developers need 
to write a mapper and a reducer function: 
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 (1) 

 

1: ( ,[ ,..., ]) ( , _ )mreduce key value value key final value  (2) 
 
The MapReduce model is shown in Figure 1. 
 
 

 

Figure 1. Execution Process of MapReduce Model 
 
 

Node and task failure is prone to happen during a MapReduce job execution process. 
When a node fails, MapReduce will restart all the mapper tasks on available nodes. This kind of 
rescheduling method is simple but often introduces a lot of time cost, thus for users with high 
responsiveness requirements, the negative performance influence is not acceptable. 

 
3.2. Improved Rescheduling Algorithm 

In this paper, a Checkpoint and Replication Oriented Fault Tolerant scheduling 
algorithm (CROFT) is proposed, which use a checkpoint based active replication method to 
provide better performance with low overhead when failure happens. Both node and task failure 
can be supported and failure introduced delay is significantly decreased comparing with 
traditional rescheduling in Hadoop. Thus could improve overall performance of a MapReduce 
job. 

Before the execution of one Mapper task, the algorithm will create a local checkpoint file 
and a global index file. The local checkpoint file is responsible for recording the progress of the 
current task, and could avoid re-execution from the beginning after task failure. If local task 
failure happened, the node could restart the task from recent status with the help of local 
checkpoint file. While the global index is responsible for recording the characteristics of the 
current execution, thereby help reconstructing the intermediate results in other nodes when the 
node failed, thus reduces the re-execution time. The global index file could be implemented as a 
checkpoint file saved in HDFS, thus could be accessible in case of node failure. 

The CROFT algorithm is divided into two parts, one part works on the master node and 
the other works on the worker nodes. First, the master node will pre-assign all of Mapper tasks 
and Reducer tasks on the worker nodes. In addition, as the master node is important, it's 
necessary to maintain multiple fully consistent "hot backup", to ensure seamless migration when 
a fault occurs. Two parts of CROFT algorithm are shown in Table 1 and 2. 

When a task failure occurs, simply read the checkpoint file saved in the local disk, 
restore task status to the checkpoint, and reload the intermediate results generated before 
failure, so the duplicated execution can be avoided. 

When a node failure occurs, the scheduler on the master node is responsible for 
rescheduling the interrupted mapper tasks to available replica nodes. The replica node can 
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quickly construct the intermediate results of failed tasks according to the global index file, 
greatly reducing the re-execution time. 

Note if tasks and nodes failed before saving checkpoint, the progress will continue from 
the recent checkpoint. And if the action of saving checkpoint failed, the progress will start from 
the recent checkpoint again. The simple failover strategy is effective in distributed computing 
environment with relatively low cost. The frequency of saving checkpoint is configurable. A high 
frequency will provide lower cost for failover and higher checkpoint saving cost for normal 
running, while a low frequency is in the opposite case. After careful adjusting, the frequency 
value in our experiment is set to one checkpoint per 105 key-value pairs. 

If node failure happens in the Reducer stage, then tasks on the failed node are 
rescheduled to any available replica node. The needed intermediate results have been copied 
to the replica node when Mapper tasks finished, thus there is no need to repeat the mapper 
tasks on the failed node, so the overall completion time of the MapReduce job is greatly 
reduced. 

 
 

Table 1. The Algorithm on Master Node 
1. The master node pre-assigns Mapper and Reducer task to different worker nodes. 
2. Choose K replicas for every worker node. 
3. Wait for results of all worker nodes. 

a) If all results received, merge these results and complete job. 
b) Or, go to 3 and keep waiting. 

4.Periodically send probing packets to all worker nodes for their status, then in a round: 
a) If all worker nodes give responses, then go to 4 and keep probing. 
b) Or, if one node didn't respond in given time interval, then mark the node as failed: 

i. Get the worker id of the failed node, with all the unfinished tasks on the node. 
ii. Put all unfinished Mapper tasks into the global queue, and reschedule them on the available replica node. 
iii. If there are failed tasks on the failed node, then reschedule these tasks on the replica node which have 

the intermediate results, without re-executing the Mapper tasks. 
c) If one node has finished all tasks, then re-assign other unexecuted tasks to the node. 

 
 

Table 2. The algorithm on worker node 
1. Check the given task: Is it a Mapper task or a Reducer task. 

a) If it's a Mapper task, check it's a new task or a re-execution of failed task. 
i. If it's a new task, initialize and execute it. 
ii. If it's a re-execution of local failed task, then get its progress from the local checkpoint file and continue 

execution. 
iii. If it's a re-execution of the failed task from other nodes, then read global index file for the task, rapidly 

reconstruct intermediate result from the offsets in global index file. 
b) If it's a Reducer task, check it's a new task or a re-execution of the failed task, or unexecuted tasks from other 

nodes. 
i. If it's a new task, initialize and execute it. 
ii. If it's a re-execution of the failed task from other nodes, read backup intermediate data from the local disk and 

execute it. 
iii. If it's a new assigned unexecuted task from other nodes, then read intermediate data from a given worker 

node and execute it. 
2. Create a local checkpoint file and a global index file for the given Mapper task. 
3. Start a Mapper task, in the process: 

a) When the Mapper's memory buffer is full, dump intermediate data into local files. After dumping finished, record 
the position of the input stream and Mapper ID (Position, Mapper_ID) into local checkpoint file. 

b) According to the location distribution of input key-value pairs which contributed to output key-value pairs, two 
different strategies are employed to record these distributions into the global index file. 

i. For input Key-Value pairs producing output key-value pairs, record their position (T1, offset) into global index 
file. Which means only pairs in these offsets need to be processed when re-execution. Here T1 means this is the 
type 1 record. 

ii. Or, for input pairs which give no output, record the range as (T2, offset1, offset2), which means the input pairs 
between offset1 and offset2 have no output and could be skipped when re-execution. T2 means this is the type 2 
record. 
4. When a Mapper task finished, shuffle the intermediate results and send to corresponding Reducer nodes. Copy 
the intermediate data needed by local Reducer task to replica nodes, in case of node failure. Then notify the 
completion of Mapper task to master node and delete the local checkpoint file and the global index file. 
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3.3. System Analysis 
For a given Mapper task m, the question is: for a given input range of an input split, how 

to decide the kind of records (T1 or T2) in global index file, thus to minimize storage overhead. 
For the given input range, set the total number of key-value pairs as Nm, and the number of 
output key-value pairs as N’

m. The size of type 1 and type 2 records is L1 and L2: 
 

2 12L L
  (3) 

 
Set Sm,1 and Sm,2 as the range’s storage overhead in type 1 and type 2 record. Set Vm 

as the count of input sub-ranges which give no output, and the Oi-th input key-value pair 
produces the i-th outputting key-value pairs. 

 
'

1

2 1

0, 1

1, 1

mN
i i

m
i i i

O O
V

O O


 

 
   


   (4) 

   
We have, 
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Set Rm as the decision we make, when Rm = 1, we store type 1 record to global index 

file, or if Rm =2, we use type 2 record. Then we can use next equation to decide which kind of 
record to use. 
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4. Experiment 

We validate our algorithm on Hadoop cluster. CROFT is implemented as a patch of 
Hadoop. The comparison is measured from the performance aspect and the overhead aspect in 
the case of tasks failure and nodes failure. The performance of the algorithm is evaluated by 
delay which is a very important factor for user experience, and the pursuit of low-latency is a 
main target in large-scale cloud environment. The implementation of the algorithm is based on 
Hadoop 0.20.1, Java1.6 and HDFS file system with HDFS data block size of 256MB. The 
underlying infrastructure is a 20-node HP blade cluster node with quad-core Xeon 2.6GHz CPU, 
8G memory, 320G hard drive, with two pieces of Gigabit NICs. Every node is configured to hold 
four Xen virtual machines. Thus it has 80 virtual nodes where 40 nodes for Hadoop cluster and 
40 nodes for Hadoop with CROFT. For each cluster, one node is deployed as the master node 
and remaining 39 nodes are deployed as the worker node. A single worker node can 
simultaneously run two Mapper tasks and one Reducer task. The job for experiment is a typical 
filter job, which is to filter out certain entries in the huge amounts of data. This kind of job is 
computationally intensive and has less intermediate results. We use 1.2 million English web 
pages with an average page size of 1MB for test. By adjusting the split size, one Mapper 
handles an average of approximately 120M input data, and each node is assigned with an 
average of about 250 mapper tasks. 

There are three kinds of MapReduce job used in the experiment, according to the 
distribution of query words in input data: the aggregated job, the sparse job and the mixed job. 
In an aggregated job, the location of query words is gathered in the target data; in a sparse job, 
the location of the query words are more dispersed; while in a hybrid job, above two situations 
co-exists.  
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The MapReduce job execution performance is usually influenced by factors as below: 
(1) the size of the data set, usually every mapper task will deal with a subset of data (split); (2) 
worker nodes’ computation performance; (3) MapReduce job type; (4) The number of bad 
records in each split, each of these bad records will result in restarting of the failed task; (5) The 
number of failed worker nodes. By adjusting these factors, the effectiveness and the overhead 
of given fault tolerant algorithms can be evaluated and compared in the same criterion. 

In scenario with only task failure, Figure 2 shows the comparison of a MapReduce job 
completion time between Hadoop and CROFT. The x-axis is the task error probability in the 
form of error task number per 100 tasks; the y-axis is the total completion time. There is no 
upper limit on the error number of each mapper task. We can see, with CROFT, along with the 
increase in the probability of errors, the execution time of the job will increase, but has 
significant improvement compared to that of Hadoop without CROFT. Especially when the 
number of bad record in input split increased, the local checkpoint file will be read more 
frequently, thus saved more execution time, and performance here will be more superior to that 
of Hadoop. 

 

Figure 2. Comparison of Execution Time with 
Task Failure 

Figure 3. Comparison of Execution Time with 
Node Failure 

 
 

Figure 4. Comparison of Execution Time with 
task and Node Failure 

Figure 5. Comparison of Average Network 
Overhead with Node Failure 

 
 
In scenario with only node failure, Figure 3 shows the comparison of execution time of a 

MapReduce job between Hadoop and CROFT. The x-axis is the number of failed nodes; the y-
axis is the total completion time. When node failure happens, the failed node will be removed 
from the cluster. In CROFT, it is shown that along with more nodes failed, the increase of job 
execution time is not obvious. CROFT’s performance is better than the original Hadoop. CROFT 
will significantly decrease the re-execution time, because the simple rescheduling mechanism of 
Hadoop will start all failed task from the beginning on replica nodes, which defer shuffling and 
reducing. While CROFT could finish more tasks in the same period of time by re-executing the 
mapper tasks quickly and efficiently.  
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In scenario with both task failure and node failure, Figure 4 shows the comparison of a 
MapReduce job completion time between Hadoop and CROFT. The x-axis is the probability of 
task failure and node failure, in the form of failed task/node count per 100 tasks/nodes; the y-
axis is the total completion time. It’s shown that under the joint influence of task and node 
failure, the relation between the job execution time and the failure probability is more than linear, 
while the overhead in CROFT is mainly introduced by task migration and task progress restore, 
thus a lot of re-execution time is saved. 

On the other hand, the CROFT algorithm does not bring too much overhead. Network 
overhead is ignored because there is no extra network transferring under the condition of task 
failure. Figure 5 shows the extra network overhead of CROFT which is introduced by 
rescheduling of a MapReduce job under the condition of node failure. X-axis is the number of 
failure nodes, and the y-axis is the average network overhead. It is shown that, compared with 
the network overhead of intermediate results replication in Hadoop, the extra network overhead 
of CROFT is quite limited, because in the case of node failure, network overhead is mainly from 
the active replication of the global index file. 

In the task failure scenario, the storage overhead is the size of the local checkpoint file, 
which is negligible due to the limited position information stored in it. Figure 6 shows the 
comparison of storage overhead of three different types of MapReduce job, under the scenario 
of the 10 failed nodes. Because increased storage overhead in CROFT is mainly for storing of 
global index file, it is very limited compared with the intermediate results stored in Hadoop. 

 
 

 
Figure 6. Comparison of Average Storage Overhead with Node Failure 

 
 
5. Conclusion 

Hadoop’s simple rescheduling mechanism significantly increased the MapReduce job’s 
overall completion time. The paper proposed a Checkpoint and Replication Oriented Fault 
Tolerant scheduling algorithm (CROFT), which is fully implemented and tested on Hadoop. 
Experimental results show that CROFT is suitable for multiple types of MapReduce job and 
could greatly reduce the overall completion time under the condition of task and node failure. 
The runtime performance can be improved by 30% or more than that in Hadoop. In the case of 
a large number of nodes failed, the improvement could be 80% or more. 
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