# **Clustering Analysis Based on Chaos Immune Algorithm**

# Wu Yanbin

School of Management Science and Engineering, Hebei University of Economic and Business Shijiazhuang, China, telp: 86-0311-87655561 e-mail: wuyanbin080@163.com

#### Abstract

To improve the accuracy of clustering classification, the Chaos Immune Algorithm was proposed. In this algorithm, the ergodic property of chaos phenomenon is used to optimize the initial population, so it can accelerate the convergence of Immune Algorithms. Chaotic systems are sensitive to initial condition system parameters. Through the clone selection operator, antibody circulation and supplement, Clone operator and excellent individual chaotic disturbance, local optimums were avoided, so the global optimization was obtained. As for this issue, chaotic immune algorithm, ALECO-2, BPMA and BP algorithm were applied to test the algorithm performance in two group experiments. Theory and experiment showed that the Chaos Immune Algorithm can get global optimum clustering center, and greatly improve the amplitude of operation.

Keywords: chaos, immune algorithm, cluster classification

#### Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

#### 1. Introduction

Clustering Analysis is a non-supervisory pattern recognition method[1,2]. Data is grouped by clustering. And each group of data thus generated is termed as a cluster. Each data in a cluster is named as an object. The purpose of clustering is to make the objects from the same cluster to resemble each other in characteristic as much as possible, while objects from different clusters to differentiate each other in characteristic as much as possible. The task of clustering is to divide an unmarked mode into some subclasses according to certain rules. It is required that analogous samples be classified into the same group while non-analogous samples into different groups. Therefore, it is termed as non-supervisory classification. Currently, different methods of clustering have been applied into many fields like data mining, pattern recognition, image processing, Laser Radar targets detection, and remote sensing technique [3-6].

Overview of cluster analysis as follows:

The clustering can be simply described as follows: if classify *n* vectors  $X_p(p=1,2,\cdots,n)$  into *c* categories  $G_j(j=1,2,\cdots,c)$ , and the clustering center of each categories should be  $c_j$ . This pattern consists of the following steps:

(1) Select appropriately the initial center  $G_1^0, G_2^0, \cdots, G_c^0$  of c categories.

(2) In *k* iterations, if we adjust any sample vector  $X_p$ , into any category of *c* categories, as for all  $i \neq j, i, j \in [1, c]$ , if  $||X_p - G_j^k|| < ||X_p - G_i^k||$ , then  $X_p \in S_j^k$ , of which,  $S_j^k$  is the category with  $G_i^k$  as the center.

(3) Recalculate the new center  $G_j^{k+1}$ :  $G_j^{k+1} = \frac{1}{N_j} \sum_{X_p \in S_j^k} X_p$  of category  $S_j^k$  that we got

from step 2,  $N_j$  in the formula is the number of samples in category  $S_j^k$ , the condition for ending the iteration is  $i \neq j, j = 1, 2, \dots, c$   $G_i^k = G_i^{k+1}$ .

2145

As is shown, the clustering is an issue of optimization of grouping in nature. And the selection of the initial center influences the result of clustering greatly. Optimization of grouping can be solved by immune algorithm, and chaotic optimization arithmetic operators are introduced into immune algorithm. The ergodic property of chaos phenomenon is used to optimize the quality of the initial population and improve the efficiency of calculation.

### 2. Research Method

The core of Chaos Immune Algorithm is based on the biologic immune mechanism reflected in mathematics. Combining with random choices and determinacies, the Artificial Immune Algorithm is a heuristic random searching algorithm which has the ability to develop. The chaotic immune algorithm is indicated as Figure 1.

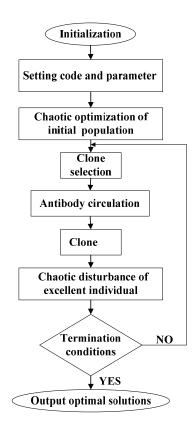


Figure 1. The process of Chaos Immune Algorithm

Major operators of Chaotic Immune Algorithm:

(1) Chaotic optimization of the initial population

 $A_g$  was defined initial antigen and Ab were defined initial antibody populations. M was represented the scale of antibody populations.

 $X_{m} = \{x_{m1}, x_{m2}, \dots, x_{mi}, \dots, x_{mn}\} \text{ was represented an initial antibody, } m = 1, 2, \dots, M \ i = 1, 2, \dots, n . n$ is the dimension of variable  $X_{m}$ . Similar with genetic algorithm,  $x_{mi}$  was called allele,  $x_{mi} \in [a_{mi}, b_{mi}]$ . Antibody bit string was divided into *l* segments and every segment length was  $n_{i}$ , so,  $n = \sum_{i=1}^{l} n_{i}$  was represented total length of antibody gene segment.  $Y(0) = (y_{0,1}, y_{0,2}, \dots, y_{0,i})$  $(i = 1, 2, \dots, n)$  was defined initial antibody populations center. After *k* iterations, the euclidean distance reciprocal between individual and antibody populations center was defined by affinity function:

$$\frac{1}{aff(X_m)} = \left(\sum_{i=1}^n |x_{mi} - y_{ki}|^2\right)^{\frac{1}{2}}$$
(1)  
$$n = 1, 2, \cdots, M \quad i = 1, 2, \cdots, n$$

Main operators as follows:
1) Chaos optimization of initial population
The initial *Ab* were optimized through chaos operator.
2) The logistic map was used to generate chaotic variable γ<sub>i</sub><sup>k</sup>.

$$\gamma_i^{k+1} = \mu \gamma_i^k \left( 1 - \gamma_i^k \right)$$

$$i = 1, 2, \cdots, n \quad k = 0, 1, 2, \cdots$$
(2)

Where  $\mu$  is the control parameter, after determined the value of  $\mu$ , with the arbitrary initial value  $\gamma_i^0 \in (0,1)$  (except 0.25, 0.5, 0.75 the fixed point of equation(2)), an assured time series  $\gamma_i^1, \gamma_i^2, \dots \gamma_i^k$  can be iterated [7].

A chaotic-type initial value  $\gamma_{mi}^{0}$  was produced by Equation (3).

$$\gamma_{mi}^{0} = (x_{mi} - a_{mi})/(b_{mi} - a_{mi})$$

$$m = 1, 2, \cdots, M \quad i = 1, 2, \cdots, n$$
(3)

Through the inherent properties of chaotic variables to fulfill the overall search, Chaos optimization algorithm can map the chaos space to the solution space. According to Equation (4), the chaos variables were maped from chaos space to the solution space.

$$x_{mi} = a_{mi} + (b_{mi} - a_{mi}) \gamma_{mi}^{k}$$

$$m = 1, 2, \cdots, M \quad i = 1, 2, \cdots, n$$
(4)

 $x_{mi}^*$  was set as the optimal solution at the current phase of coarse-grained search,  $aff^*$  was the optimal objective function value for current phase. After each iteration, the individual affinity function aff(k) was calculated, iteration termination condition was  $aff(k) \le aff^*$ . The antibody population after optimization was denoted by Ab'.

(2) Clone selection operator

After the combination of antibody with antigen, antigen can be destroyed through a series of reactions which are based on antibody concentration. Antibody concentration  $d(X_m)$  was defined by the following equation [8].

$$d(X_m) = \left[\frac{1}{M}\sum_{q=1}^{M} \frac{1}{1 + \sqrt{\sum_{i=1}^{n} (x_{mi} - x_{qi})}}\right]^{\alpha \cdot \left(1 - \frac{g}{G}\right)}$$
(5)

Where  $\alpha$  was system parameter to adjust algorithm convergence speed, g was evolution generation and G was the maximum evolution generation.

Affinity function  $aff(X_m)$  was adjusted through the following equation. After the adjustment,  $aff(X_m)$  was denoted by  $aff(X_m)$ .

$$af\tilde{f}(X_m) = aff(X_m)/d(X_m)$$
(6)

These antibodies which have bigger individual affinity value and the lower concentration can be promoted, on the contrary, those antibodies with smaller individual affinity value and the higher concentration can be inhibited, thus this process ensured the diversity of antibody group, so as to escape from local optimums.

(2) Antibody circulation and supplement

The antibody circulation and supplement mechanism of biological immune system was simulated in order to ensure the diversity of antibody group and realize global search. Each time before antibody group Ab' were cloned,  $M_s$  highest affinity antibodies selected in a random generation antibody group  $Ab_r$  with population size of  $M_r$  were used to replace  $M_s$  lowest affinity antibodies in Ab'.

(4)Clone operator

According to aff, antibodies in Ab' were ordered by sort descending. Take top mc antibodies to be cloned, the antibody group cloned were denoted by Abc. As the following equation, the population size of Abc can be calculated.

$$M_c = \sum_{j=1}^{m_c} round\left(\frac{\beta M}{j}\right) \tag{7}$$

Where  $M_c$  was the population size of  $Ab_c$ .  $\beta$  was proliferation coefficient to control antibody group size owing to its influence of algorithm iteration and calculating time. *j* was the sequence number of antibody by sort descending. *round*(.) was rounding operation.

(5) Variation Operator

 $\overline{X} = (\overline{x_1}, \dots, \overline{x_{i-1}}, \overline{x_i}, \dots, \overline{x_n})$  was set as a parent entity. According to Equation (8), after variation, the offspring individual was  $\tilde{X}_m$ , the antibody group mutated was denoted by  $Ab_m$ .

$$\tilde{X}_m = \overline{X}_m + \eta N(0,1) e^{-a\hat{f}}$$
(8)

After (0,1) standardization, *aff* of  $\overline{X}_m$  was denoted by  $a\hat{ff}$ . N(0,1) is normal random function with mean value  $\mu = 0$  and variance  $\sigma = 1$ . The proportionality constant  $\eta$  can control attenuation of negative exponential function. According to Equation (8), the bigger the antibody affinity value, the smaller variation, that was beneficial to maintain the stability of the local optimal solution.

(6) Excellent individual chaotic disturbance

After the clone selection, clone and variation, the current optimal solution was  $X^* = (x_1^*, \dots, x_{i-1}^*, x_i^*, \dots, x_n^*)$ . According to Equation (9), chaotic disturbances to  $x_i^*$  was made.

$$x_i(k') = x_i^* + \varphi u_{k,i} \quad i = 1, 2, \cdots, n$$
(9)

In the equation,  $x_i(k')$  was the chaotic variable of a smaller range of ergodicity relative to Equation (9),  $\varphi$  was the adjustment coefficient related to the iteration number k'. in this paper  $\varphi$  was set by  $\varphi = 1 - \left(\frac{k'-1}{k'}\right)^n$ . Continue to carry out iterative search with  $x_i(k')$ , the termination condition was *aff*  $(k') \le aff^*$ .

### 3. Results and Analysis

As for this issue, chaotic immune algorithm, ALECO-2, BPMA and BP algorithm were applied to test the algorithm performance in two group of experiments.

# 3.1. Tset 1

By inputting a 4 that is in normal distribution into 2 to carry out the simulated experiment. There are 20 samples, and the samples' vectors of average value is  $\begin{bmatrix} -1.5 & -1.5 & -1.5 \end{bmatrix}$  and  $\begin{bmatrix} 2.2 & 2.2 & 2.2 \\ 2.2 & 2.2 \end{bmatrix}$ , the sample's covariance matrix is 3 0  $0 \quad 0$ 5 0 0 0 0 3 0 0 0 5 0 0 , there are overlaps among these samples [9]. and 0 0 3 0 0 0 5 0 0 0 0 3 0 0 0 5

As for this issue, the chaotic immune algorithm, ALECO-2, BPMA and BP algorithm were applied. On the basis of large number of simulated operations, the optimum studying parameter for each algorithm were found. With the optimum parameter, the comparative curve of convergence of each algorithm were shown in Figure 2. the average value and standard balance of the times of iteration when converge after operating for 10 times at random were shown in Table 1. CIA was tested in another group with 20 samples for each patter, the rate of correct identification is 95.5%.

Table 1. The Statistics of Convergence of Different Algorthm

| Algorithm                           | CIA   | ALECO-2 | BPMA  | BP    |
|-------------------------------------|-------|---------|-------|-------|
| Average Iteration Times             | 24.1  | 58.2    | 60.14 | 128.2 |
| Standard Balance of Iteration Times | 10.17 | 22.27   | 20.03 | 47.45 |

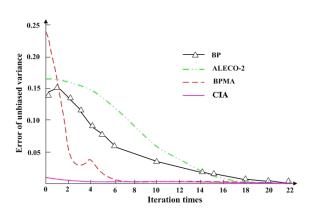


Figure 2. Comparative Curve of Convergence

# 3.2. Test 2

The market competitor was divided by marketing theory into 4 types. They are market Leader, market challenger, market follower and market filler. After the repeated research and comprehensive analysis of the 4 types of market competitors five characteristic factors can be extracted: (1)  $x_1$  is the relative market share; 2)  $x_2$  is the level of price changes for the enterprise; (3)  $x_3$  is the capability for enterprise in new product development; 4)  $x_4$  is the capability for enterprise distribution channels and physical distribution; 5)  $x_5$  is the capability for a comprehensive marketing. Various characteristic factors and the corresponding grade of the actual meaning and values have been further divided, as shown in Table 2.

|                                                                               | Featured factor             | Grade   | Real meaning                                                        | Corresponding value |
|-------------------------------------------------------------------------------|-----------------------------|---------|---------------------------------------------------------------------|---------------------|
| <i>x</i> <sub>1</sub>                                                         | Relative market share       |         | The comparison of market share in the<br>largest market competitors | 0.1-10              |
|                                                                               | The level of price shapes   | 1       | High                                                                | 9-10                |
| r                                                                             |                             | 2       | Medium                                                              | 8-8.9               |
| x <sub>2</sub> The level of price change                                      | 3                           | General | 6-7.9                                                               |                     |
|                                                                               | 4                           | Weak    | 0-5.9                                                               |                     |
| x <sub>3</sub> capability of new product<br>development                       | 1                           | High    | 9-10                                                                |                     |
|                                                                               | 2                           | Medium  | 8-8.9                                                               |                     |
|                                                                               | 3                           | General | 6-7.9                                                               |                     |
|                                                                               |                             | 4       | Weak                                                                | 0-5.9               |
|                                                                               |                             | 1       | High                                                                | 9-10                |
| <i>x</i> <sub>4</sub> Capability of saling channels and physical distribution | 2                           | Medium  | 8-8.9                                                               |                     |
|                                                                               | 3                           | General | 6-7.9                                                               |                     |
|                                                                               | 4                           | Weak    | 0-5.9                                                               |                     |
| X <sub>5</sub> Capability of comprehensive marketing                          | 1                           | High    | 9-10                                                                |                     |
|                                                                               | Capability of comprehensive | 2       | Medium                                                              | 8-8.9               |
|                                                                               | marketing                   | 3       | General                                                             | 6-7.9               |
|                                                                               |                             | 4       | Weak                                                                | 0-5.9               |

Table 2. Featured Factors of Enterprise Competitive Position

Table 3. Accuracy of Different Algorthms

| Alg     | orithm       | Market leader | Market challenger | Market follower | Market filler | Average correct rate |
|---------|--------------|---------------|-------------------|-----------------|---------------|----------------------|
| BP      | Iterations   | 90            | 2000              | 2200            | 200           |                      |
|         | Correct rate | 76.10%        | 72.38%            | 71.77%          | 73.34%        | 73.39%               |
| BPMA    | Iterations   | 82            | 1900              | 2100            | 194           |                      |
|         | Correct rate | 80.30%        | 80.42%            | 81.75%          | 83.55%        | 82.39%               |
| ALECO-2 | Iterations   | 77            | 1800              | 2040            | 183           |                      |
|         | Correct rate | 86.10%        | 82.38%            | 81.77%          | 83.34%        | 83.39%               |
| CIA     | Iterations   | 70            | 1788              | 2000            | 175           |                      |
|         | Correct rate | 87.10%        | 89.08%            | 88.98%          | 88.75%        | 88.54%               |

280 of the garment industry manufacturers were randomly divided into the training sample set (140 samples) and test sample set (140 samples), four characteristic factor values were calculated in each sample. ALECO-2, BPMA and BP algorithm were applied to do a classified comparative test. The results were shown in Table 3.

#### 4. Conclusion

Focusing on data clustering, this article tries to combine chaotic operator with immune algorithm. This chaotic immune algorithm integrates the advantages of both chaotic operator and clone operators. The outputs of theory and simulation both indicate that the chaotic immune algorithm can ensure the global optimum clustering and improve the amplitude of operation greatly.

#### Acknowledgment

This paper is part of the research results of Youth Fund of Science and Technology Research of Hebei Higher School (No: 2010236).

#### References

[1] Cheung YM. K Means. A New Generalized k-Means Clustering Algorithm. *Pattern Recognition Letters*. 2003; 24(15): 2883-2893.

- [2] Kanade M, Hall O. Fuzzy ants and clustering. *IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans.* 2007; 37(5): 758-769.
- [3] Hung CC, Kulkarni S, Kuo BC. A New Weighted Fuzzy C-means Clustering Algorithm for Remotely Sensed Image Classification. *IEEE Journal of Selected Topics in Signal Processing*. 2011; 5(3): 543-553.
- [4] Tseng VS, Kao CP. Efficiently Mining Gene Expression Data via a Novel Parameterless Clustering Method. *IEEE/ACM Trans. On Computational Biology and Bioinformatics*. 2005; 2(4): 355-365.
- [5] Farnaz F, Ebrahim P, Shahram T. Retinal Identification Based on Density Clustering and Fuzzy Logic and Connecting This information to Electronic Health Record. *International Journal of Electrical and Computer Engineering*. 2013; 3(3): 359-365.
- [6] Cuncun W. Intelligent Search Technology Combining Semantic Grid and Clustering. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(8): 4803-4809.
- [7] Alatas B, Akin E, Ozer AB. Chaos Embedded Particle Swarm optimization Algorithms. *Chaos Solitons Fractals*. 2009; 40(4): 1715-1734.
- [8] Riccardo C. Chaotic Sequences to Improve the Performance of Evolutionary Algorithms. *IEEE Transactions on Evolutionary Computation.* 2003; 7(3): 289-304.
- [9] Leandro DC, Fernando VZ. Learning and Optimization Using the Clonal Selection Principle. *IEEE Transactions on Evolutionary Computation.* 2002; 6(3): 239-251.
- [10] CCarlotta D, Dimitrios G, Sheng M. Locally Adaptive Metrics for Clustering High Dimensional Data. Data Mining and Knowledge Discover. 2007; 14(1): 63-97.