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Abstract
The problem of optimal vibration control for vehicle active suspension systems under road rough-

ness disturbance is considered. First, the models for two-degree-freedom quarter-car suspension system
under road roughness disturbance are presented, and road disturbances are considered as the output of an
exosystem. Then, the feedforward and feedback optimal vibration control (FFOVC) law for vehicle active sus-
pension systems is obtained and the existence and uniqueness of the FFOVC is proved. A state observer
is designed to solve the problem of the physically realizable for the feedforward compensator. Numerical
simulations illustrate the effectiveness of the FFOVC law.
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1. Introduction
With the development of machines technology and information technology, the vehicle

suspension system underwent three stages: passive [1, 2], semi-active [3], and active suspension
systems [4, 5, 6], in the last few decades. As is well known, vehicle active suspension systems,
compared with passive and semi-active suspension system, could diminish the vibration of the
vehicle body by using power sources more effectively. Compared to passive suspension system,
active suspension system could meet the requirement more closely about driving safety, vehicle
handling, and ride comfort. By using power sources (e.g., compressors and hydraulic pumps)
active suspension systems have fewer limitations on the optimization procedures, where the sus-
pension characteristics can be adjusted while driving to accommodate the profile of the road[7].
By using low consumption elements and minimizing the required energy level, active suspension
system can compensate for the lake of higher production consumption and turn into more prac-
tical ones. Recently, a considerable amount of theoretical and experimental research effort has
been aimed at improving vehicle suspension systems, such as fuzzy control [8], adaptive control
[9], sliding mode theory [10], and H∞ control [6, 11].

The essential elements in any active vehicle suspension design and control always in-
clude ride comfort, tire deflection, and suspension deflection. However, the vibration of vehicle is
mainly caused by the road disturbances, which may result in deterioration of ride comfort, vehi-
cle handling, driving safety, and even structural damage. Therefore, the influence from the road
disturbances must be considered in any active suspension design. It should be noted that the
road disturbances are mainly caused by road roughness and variable velocity. Then, the vibra-
tion control for vehicle active suspension system could be viewed as an optimal vibration problem
where one would attempt to keep the ride comfort, tire deflection, and suspension deflection at
an acceptable level [11, 12]. In order to analyze the dynamic behavior of a vehicle under road
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disturbances, road disturbances are typically considered as a random process with a ground dis-
placement power spectral density (PSD)[13]. Based on the characters of road roughness and
variable velocity, the road disturbances are formulated as an exosystem in this paper.

This paper investigates the optimal vibration control for an active vehicle suspension sys-
tem under road disturbances. The model of active vehicle suspension system is built and the
road disturbance is viewed as an exosystem. Then, the original vibration control is formulated as
the optimal vibration control for vehicle active suspension system under road disturbances. By
using the optimal control theory, the FFOVC law of the vehicle active suspension system under
road disturbances is obtained, and the existence and uniqueness of the FFOVC is proved. In
order to solve the physically realizable problem of the feedforward compensator, a reduced-order
observer is constructed. A numerical example of the FFOVC law for an active vehicle suspension
with under road disturbances is presented to demonstrate the effectiveness of the FFOVC law.

The rest of paper is organized as follows. Section 2 presents the descriptions of the
vehicle active suspension system, exosystem of the road disturbance, and quadratic performance
index. In Section 3, the main results of this paper are presented, in which the FFOVC law is
obtained based on the optimal control theory and the existence and uniqueness of the FFOVC
is proved. A reduced-order observer is constructed in Section 4 to solve the physically realizable
problem. Numerical examples are given in Section 5 to demonstrate the effectiveness of the
FFOVC law. Finally, we conclude our findings in Section 6.

2. Problem formulation
2.1. System formulation

The two-degree-freedom quarter-car active suspension system is shown in Fig.1 [11, 12].

Figure 1. The two-degree-freedom quarter-car active suspension system

The dynamic equation for vehicle active suspension system is described as:

msz̈s(t) + bs[żs(t)− żu(t)] + ks[zs(t)− zu(t)] = u(t),
muz̈u(t) + bs[żu(t)− żs(t)] + ks[zu(t)− zs(t)] + kt[zu(t)− zr(t)] = −u(t),

(1)

where ms is the sprung mass; mu is the unsprung mass; ks and bs are the stiffness and damp-
ing of the passive vehicle suspension system, respectively; kt stands for compressibility of the
pneumatic tire; zs(t) and zu(t) are the displacements of the vehicle sprung mass and unsprung
masses, respectively; zr(t) is the road displacement input; u(t) represents the active control force
of the vehicle suspension system, which is produced by hydraulic or other shock absorber.

Defining the following state variables:

x1(t) = zs(t)− zu(t), x2(t) = zu(t)− zr(t), x3(t) = żs(t), x4(t) = żu(t), (2)
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x1(t) is the suspension deflection, x2(t) denotes the tire deflection, x3(t) denotes the speed of
sprung mass, and x4(t) is the speed of unsprung mass. Then, the state variable x(t) of the vehicle
suspension system is introduced as:

x(t) = [x1(t) x2(t) x3(t) x4(t)]
T
. (3)

Riding comfort is the key performance criteria in any vehicle suspension system design. Ride
comfort is usually evaluated by the sprung mass acceleration z̈s(t) in the vertical direction, the
dynamic travel of suspension system usually by the amount of suspension defection zs(t)− zu(t)
and the road holding ability usually by the tire defection zu(t)− zr(t).

In order to satisfy the requirements of performance criteria, the controlled output yc(t) is
defined as:

yc(t) =

 yc1(t)
yc2(t)
yc3(t)

 =

 z̈s(t)
zs(t)− zu(t)
zu(t)− zr(t)

 =

 z̈s(t)
x1(t)
x2(t)

 . (4)

It is unnecessary and uneconomical to output all of the variables, so the measured output ym(t)
can be expressed by:

ȳm(t) =
[
zs(t)− zu(t) żs(t)

]T (5)

Then, the active vehicle suspension equation of a continuous-time system in the state space form
can be expressed by:

ẋ(t) = Ax(t) +Bu(t) +Dv(t)
yc(t) = Cx(t) + Eu(t)
ym(t) = C̄x(t)

(6)

where

A =


0 0 1 −1
0 0 0 1
−ks

ms
0 −bs

ms

bs
ms

ks

mu

−kt

mu

bs
mu

−bs
mu

 , B =


0
0

1
ms

− 1
mu

 , D =


0
−1
0
0

 ,
C =

 − ks

ms
0 − bs

ms
− bs

ms

1 0 0 0
0 1 0 0

 , E =

 1
ms

0
0

 , C̄ =

[
1 0 0 0
0 0 1 0

]
,

(7)

v(t) = żr(t) is the road disturbance. By using ground height sensor to predict the road surface
shape [14], the road disturbance v(t) could be measurable.

2.2. Disturbance analysis
In order to improve the ride comfort and vehicle operation, the effect of road disturbance

must be considered in active suspension design. In general, vibrations in vehicle suspension sys-
tem are caused by the existence of the road disturbances. The road disturbances are typically
specified as a stochastic process with a ground displacement power spectral density (PSD):

Gd(Ω) =

 Gd(Ω0)
(

Ω
Ω0

)−n1

, Ω ≤ Ω0

Gd(Ω0)
(

Ω
Ω0

)−n2

, Ω > Ω0

(8)

where Ω is a spatial frequency and it is the reciprocal of the wavelength, which donates the wave

TELKOMNIKA Vol. 12, No. 6, June 2014 : 4190 ∼ 4199



TELKOMNIKA ISSN: 2302-4046 � 4193

numbers per meter, it’s dimension is m−1 . Ω0 = 1/2π is a reference frequency. n1 and n2 are
road roughness constants, in general, n1 = 2 and n2 = 1.5 .

In this paper, the road disturbances for vehicle active suspension systems are mainly
caused by the road roughness. Assume that the speed of the car is v0 and the road displacement
input zr(t) is an approximately periodic function. Since the wheel and suspension systems have
the characteristic of low pass filtering (LPF), the road disturbances with low frequency are consid-
ered . Therefore, the road displacement input from the road irregularities can be approximately
simulated by the following finite sum of Fourier series:

zr(t) =

p∑
j=1

ξj(t) =

p∑
j=1

φj sin(jω0t+ θj), j = 1, 2, . . . , p, (9)

where p is used to restrict the range of frequency, ω0 = 2πv0/l, l is the length of the road segment.
φj =

√
2Gd(j∆Ω)∆Ω, ∆Ω = 2π/l, and the initial phase θj ∈ [0, 2π) is a random variable following

a uniform disturbance.
In order to facilitate design of the optimal control law, the definition of road disturbance

state vector is

w(t) = [w1(t), · · · , w2p(t)]T

= [ξ1(t), · · · , ξp(t), ξ̇1(t), · · · , ξ̇p(t)]T
(10)

The road disturbance vector v(t) can be given by:

ẇ(t) = Gw(t),
v(t) = Fw(t),

(11)

where

Ḡ =

[
0 I

G̃ 0

]
,

F = [ 0, · · · , 0,︸ ︷︷ ︸
p

1, · · · , 1︸ ︷︷ ︸
p

]

G̃ = diag
{
−ω2

0 , · · · , −(pω0)2
} (12)

One can see that the derivatives of the system (9) and (11) are equivalent. Noting that, the rank

of
[
FT (FG)

T · · · (FG2p−1)
T
]T

= 2p, the pair (F, Ḡ) is observable.

2.3. Optimal performance index formulation
In view of the limited power of the actuator, a smaller active force u(t) for the active sus-

pension system should be chosen to reduce energy consumption in practical applications. Due
to the persistent effect from road disturbance, the state vector and the control vector of the active
suspension system will not converge to zero synchronously. Therefore, the traditional quadratic
optimal control performance index will not be available. In this case, the following quadratic aver-
age performance index is chosen as:

J(u(·)) = lim
T→∞

1

T

∫ T

0

[yT
c (t)Q0yc(t) + u2(t)]dt, (13)

where Q0 = diag(q1, q2, q3) and it is positive definite matrix. qi can be determined by different
vehicle’s explicit requirements for performance indexes of ride comfort, road holding ability, sus-
pension deflection, and energy-saving in the active suspension system design. Substituting (6)
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and (7) into (13), the quadratic average performance index (13) is reformulated as:

J(u(·)) = lim
T→∞

1

T

∫ T

0

[xT(t)Qx(t) + 2xT(t)Nu(t) +Ru2(t)]dt, (14)

where

Q = CTQ0C =


k2
sq1
m2

s
+ q2 0 ksbsq1

m2
s

ksbsq1
m2

s

∗ q3 0 0

∗ ∗ b2sq1
m2

s

b2sq1
m2

s

∗ ∗ ∗ b2sq1
m2

s

 ,
N = CTQ0E =

[
−ksq1

m2
s

0 − bsq1
m2

s
− bsq1

m2
s

]T
, R = q1

m2
s

+ 1,

(15)

where ∗ denoted as the symmetry elements.
Then, the problem of optimal vibration control for vehicle active suspension system is

reformulated to find a control law u∗(t) for the system (6) with respect to the performance index
(14) that makes the performance index (14) obtain the minimum value.

3. FFOVC law
By using the following variable transformation,

ū(t) = u(t) +R−1NTx(t), (16)

System (6) and the performance index (14) are reformulated to equivalent forms as followed, re-
spectively

ẋ(t) = (A−BR−1NT)x(t) +Bū(t) +Dv(t), (17)

J(ū(·)) = lim
T→∞

1

T

∫ T

0

[xT(t)(Q−NR−1NT)x(t) +Rū2(t)]dt, (18)

where

Q−NR−1NT =


k2
sq1

q1+m2
s

+ q2 0 ksbsq1
q1+m2

s

ksbsq1
q1+m2

s

∗ q3 0 0

∗ ∗ b2sq1
q1+m2

s

b2sq1
q1+m2

s

∗ ∗ ∗ b2sq1
q1+m2

s

 (19)

One can see that Q − NR−1NT is positive semidefinite matrix. Let Q − NR−1NT = D̄TD̄, by
means of the Cholesky matrix decomposition function in Matlab, we can get:

D̄ =


√

k2
sq1

q1+m2
s

+ q2 0
ksbsq1
q1+m2

s√
k2
sq1

q1+m2
s

+q2

ksbsq1
q1+m2

s√
k2
sq1

q1+m2
s

+q2

0
√
q3 0 0

0 0
√

b2sq1q2
k2
sq1+q1q2+q2m2

s

√
b2sq1q2

k2
sq1+q1q2+q2m2

s

 . (20)

It’s easy to verify that (A−BR−1NT, B) is controllable and (D̄, A−BR−1NT) is observable.
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Based on above analysis, we obtain the following results.
Theorem 1: Consider the optimal vibration control for vehicle active suspension system

(1) under the persistent effect (1) from road disturbance vector with respect to the quadratic per-
formance indexes (13). The optimal control law uniquely exists and can be formulated as:

u∗(t) = −R−1[(BTP +NT)x(t) +BTP1w(t)], (21)

where P is the unique positive definite solution of the Riccati matrix equation,

(A−BR−1NT)TP + P (A−BR−1NT)− PBR−1BTP +Q−NR−1NT = 0 (22)

and P1 is the unique solution of the Sylvester matrix equation

(A−BR−1BTP −BR−1NT)TP1 + P1G+ PDF = 0 (23)

Proof: According to the above analysis, the optimal vibration control for vehicle active suspension
system (1) with respect to the performance index (13) is equivalent to the optimal control for
system (17) with respect to the performance index (18). According to the optimal control theory,
the optimal control for system (17) with respect to the performance index (18) can induce the
following two-point boundary value (TPBV) problem.

Applying the necessary condition of the optimal control, the optimal control law can be
described as:

u∗(t) = −R−1[BTλ(t) +NTx(t)]. (24)

Let

λ(t) = Px(t) + P1w(t). (25)

By calculating the derivatives of (26) and substituting the second equation of (24) and (11) into
(26), one gets:

λ̇(t) = Pẋ(t) + P1ẇ(t)
= P [Ax(t) +Bu(t) +DFw(t)] + P1Gw(t)
= (PA− PBR−1NT − PBR−1BTP )x(t) + (PBR−1BTP1 +BTP1)w(t).

(26)

By comparing (27) and the first equation of (24), one gets:(
(A−BR−1NT)

T
P + P (A−BR−1NT)− PBR−1BTP +Q−NR−1NT

)
x(t)+(

(A−BR−1BTP −BR−1NT)
T
P1 + P1G+ PDF

)
w(t) = 0

(27)

Since (28) can be proved for all x(t) and w(t), we can obtain the Riccati matrix equation (22),
the Sylvester matrix equation (23) and the optimal control law (21). Since (A−BR−1NT, B, D̄)
is controllable and observable, according to the linear optimal regulator theory, P is the unique
positive definite solution of the Riccati matrix equation (22) and (A − BR−1BTP − BR−1NT) is
the Hurwitz matrix equation described as:

Re[λi(A−BR−1BTP −BR−1NT)] < 0. (28)
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According to (12),Re[λi(G)] = 0 , therefore

λi(A−BR−1BTP −BR−1NT) + λj(G) 6= 0,
i = 1, 2, · · · , n; j = 1, 2, · · · , 2p,

(29)

So P1 is the unique solution of Sylvester matrix equation (23)[15].

4. Physically realizable problem
In System (11), the feedforward compensator of the optimal vibration control law u∗(t)

in (21) contains state vector w(t)’s information. As w(t) itself is unknown and unmeasured as
shown in Fig.2, the feedforward compensator is physically unrealizable. Furthermore, as we have
already pointed out in section 2.1 that we choose ym(t) in System (5) to estimate the state of the
measured output, it is unnecessary and uneconomical to output the state feedback of the optimal
vibration control law u∗(t). Therefore, we try to propose a state observer to reconstruct system
state vector x(t) and disturbance state vector w(t).

For the simplicity of statement, we construct the state observer to solve the physically
realizable problem of the optimal control law. The design of the state observer is described as:

ż1(t) = (A− L1C̄)z1(t) + L1ym(t) +Bu(t) +Dv(t),
ż2(t) = (G− L2F )z2(t) + L2v(t),

(30)

where L1 and L2 are determined by eigenvalues of the prescribed formulas (A − L1C̄) and
(G − L2F ) , respectively. Hence, we can get the physically realizable feedforward and feed-
back dynamic optimal vibration control law:

ż1(t) = (A− L1C̄)z1(t) + L1ym(t) +Bu(t) +Dv(t)
ż2(t) = (G− L2F )z2(t) + L2v(t)
u(t) = −R−1[(BTP +NT)z1(t) +BTP1z2(t)].

(31)

5. Simulation
In this section, simulation experiments are shown to illustrate the effectiveness of the

FFOVC law for the active suspension systems. The parameters of vehicle active suspension sys-
tem model are listed as [16]: the sprung mass ms = 180 kg, the unsprung mass mu = 25 kg, the
stiffness of the active suspension system ks = 16000 N/m, the compressibility of the pneumatic
tire kt = 190000 N/m, the damping of the active suspension system bs = 1000 N/m, and the di-
mension of the control force is N . Hence, the matrix values of the active suspension system (6)
are given by:

A =


0 0 1 −1
0 0 0 1

−88.89 0 −5.556 5.556
640 −7600 40 −40

 , B =


0
0

0.00556
−0.04

 , D =


0
−1
0
0

 ,
C =

 −88.89 0 −5.556 −5.556
1 0 0 0
0 1 0 0

 , E =

 0.00556
0
0

 .
(32)

In (9), v0 = 20m/s, l = 200m, p = 200 are selected. The average value of PSD is
Gd(Ω0) = 64 × 10−6m3. The comparison between the road disturbance vector v(t) in (9) and
the estimation (11) is shown in Fig. 2. Assume that sprung mass acceleration z̈s(t), suspension
deflection zs(t)− zu(t) and tire deflection zu(t)− zr(t) are of equal importance in ride comfort. So
we select q1 = q2 = q3 = 106 in performance index (13).
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The comparison between the open-loop system and the FFOVC law for active suspension
system is shown in this paper. The curves of sprung mass acceleration, suspension deflection,
and tire deflection are presented in Figs. 3-5, respectively. In order to show clearly the comparison
results between the closed-loop system and the open-loop system, the root-mean-square (RMS)
values are compared in Table 1 for sprung mass acceleration, suspension deflection, and tire
deflection.
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Figure 2. Displacement of road disturbance
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Figure 3. The curve of sprung mass acceleration

It can be seen from Figs. 3-5 and Table 1 that the optimal vibration control law we have
designed in this article for vehicle active suspension system is able to effectively control the sprung
mass acceleration, suspension deflection, and tire deflection in lower values. Therefore, the de-
signed controller is efficient to improve the performance index of ride comfort.

6. Conclusion
This paper has been concerned with the development of optimal vibration control for the

vehicle active suspension under road disturbances. This paper has presented that the original
vibration control is formulated as the optimal vibration control for vehicle active suspension system
under road disturbances. Another significant improvement is on the FFOVC law. FFOVC law can
eliminate the negative effects of the road disturbances and maintain economical operation in an
optimal fashion.
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Figure 4. The curve of suspension deflection
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