
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.6, June 2014, pp. 4330 ~ 4336
DOI: 10.11591/telkomnika.v12i6.4610 4330

Received October 2, 2013; Revised December 28, 2013; Accepted January 21, 2014

Software Vulnerability Analysis Method Based on
Adaptive-K Sequence Clustering

Di Wu1,2, Jiadong Ren1*
1College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

2Department of Information and Electronic Engineering, Hebei University of Engineering, HanDan 056038,
China

*Corresponding author, e-mail: bestmoogoo@163.com

Abstract
Software vulnerability analysis has become a hot topic recently. However, the traditional methods

for analyzing software vulnerability have higher false positive rate. In this paper, adaptive K function is
defined, and SVAAKSC (Software vulnerability analysis method based on adaptive-K sequence clustering)
is presented. The collected objects in software vulnerability sequence database SVSD are pretreated to
equal length vectors. Moreover, according to adaptive-K based sequence clustering algorithm, all software
vulnerabilities in SVSD are clustered into K clustering. Afterwards, by matching the similarities between
detected vulnerability from software and each clustering center, whether the detected vulnerability is a real
software vulnerability can be judged. Finally, the corresponding analysis report is obtained. The
experimental results and analysis show that SVAAKSC has lower false positive rate and better analysis
time.

Keywords: software vulnerability analysis, sequence clustering, adaptive-K, false positive rate

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
Information security technology has been accepted and widely applied in a lot of fields

recently [1]. However, the safety of network and information system faces great challenge
because of the incursion of hackers. Software vulnerability is one of the root causes of
information security problems. It is the defect in behavioral logic, data access and other aspects
[2]. As to software vulnerability has passive and static characteristics, computer software can
easily be exploited by malicious attackers without authorization. Thus it can do great damage to
human society. Software vulnerability analysis has become a popular and important topic of
information security theory research and practical work [3].

In order to prevent the attack and intrusion of software vulnerabilities, the effective
discovery and analysis of the software vulnerabilities is essential. Therefore, how to analyze the
software vulnerabilities fast and effectively which can be seen as a key role for improving
software security performance [4].

2. Related Work
A lot of research work of software vulnerability analysis has been carried out in recent

years. Edge-weighted call graphs mining algorithm for software bugs localization was presented
by Eichinger [5]. A novel reduction technique for call graphs which introduces edge weights was
discussed. On the basis of graph mining and traditional feature selection, an analysis technique
for weighted call graphs was also introduced. However, when the scale of graph is very large,
the analysis efficiency of software bugs is decreased. In order to reduce the amount of sliced
codes, and facilitate the subsequent calculation of code coverage information, He et al.
proposed a software defects analysis method based on program structure reversing data
dependency [6]. Reverse data dependence analysis focuses on the same program execution
path to analyze data, and the data dependencies are extracted and stored on this path.
Meanwhile, the stored and reversed data dependence is traversed based on a particular
variable. Then code statements related to the specific variable are found.

TELKOMNIKA ISSN: 2302-4046

Software Vulnerability Analysis Method Based on Adaptive-K Sequence Clustering (Di Wu)

4331

In order further improve the analysis time, many scholars used the clustering method to
analyze software vulnerabilities. Mahaweerawat et al. presented a two-level clustering method
to predict software fault [7]. SOM method was employed to classify historical data into clusters.
Software faults that occurred in cluster components are predicted by RBFN. However, as the
number of SOM units grows, the time cost is large. On the basis of dynamic information flow,
software security failures are analyzed in literature [8]. The tool of DynFlow is used to record
information flow profiles of executions. In the light of automatic cluster analysis, the executions
are selected. The efficiency of information flow anomaly analysis depends on the types of
programs, and the existed types of program defects. Wang et al. discussed DSVRDC (Detecting
Software Vulnerabilities Method based on Rapid Density Clustering) [9]. New definition of rd-
entropy and s-order are presented in this method. According to utilizing rd-entropy-based
density clustering, the vulnerability sequence pattern database is built. Analyzing sequences are
detected by the variation of s-order.

The above algorithms have been improved the time cost of software vulnerability
analysis. However, good sequence similarity measurement for software vulnerability is still not
well addressed. DVCMA (Detecting Vulnerabilities basing on Clustering and Model Analyzing)
was proposed [10]. In this approach, the identification distance is to filtrate initially before
calculating the edit distance of sequences. The vulnerabilities hiding in the software can be
mined under a novel edit-distance-based similarity function. Although DVCMA can effectively
detect software vulnerabilities, and with lower false positive and false negative rates, but the
similarity measurement between software vulnerabilities sequences is based on edit-distance, it
still has a high computational complexity.

In this article, in order to improve the analysis time of software vulnerability, on the basis
of the number of all sequence elements, and the number of common sequence elements
between two vulnerabilities, the vulnerability similarity measurement is designed. In accordance
with two-phase similarity matching, whether DV(detected vulnerability) is a real software
vulnerability or not will be determined. Afterwards, in order to reduce the impact of parameter K
to the clustering quality, further improve the performance of the false positive rate. On the basis
of a new definition of adaptive K function, AKSC (Adaptive-K-based Sequence Clustering)
algorithm is presented. The object with the smallest Adaptive(K) is deemed to the optimal K.

The reminder of this paper is organized as follows. In section 2, we describe the related
work of software vulnerability analysis. Section 3 gives problem definitions. Section 4 concludes
the SVAAKSC method. Section 5 contains experimental results, and we offer our conclusions in
section 6.

3. Problem Definitions
SVSD(Software vulnerability sequence database) is composed of collected software

vulnerability sequences, SVSD={SVS1,SVS2,…, SVSN}, wherein, SVS(Software vulnerability
sequence) represents an orderly program operation sequence which can lead to produce
vulnerability. SVS=a1a2…an. ai denotes the item of SVS, ai∈L(1≤i≤n). L={a1,a2,…,am} is the item
set, m is the number of item set. N is the number of SVS in SVSD.

Let SVSE be a set of the software vulnerability sequence elements in SVSD.
SSVSE={SE1,SE2,…,SEr,…,SE|SSVSE|}, sequence element SEr is a pair of items aiaj of SVS,
where i＜j. The number of software vulnerability sequence elements in SSVSE is denoted as
|SSVSE|. Each SVS can be represented as a |SSVSE|-dimensional vector.

Suppose that SVSx and SVSy are any two software vulnerability sequences in SVSD,
SE(SVSx) and SE(SVSy) indicate the software vulnerability sequence pair sets of SVSx and
SVSy. The similarity measurement between them is expressed as
SVSim(SVSx,SVSy)=｜SE(SVSx)∩SE(SVSy)� /｜SE(SVSx)∪SE(SVSy)� .
Where｜SE(SVSx)∪SE(SVSy)� represents the number of all sequence elements between SVSx
and SVSy. ｜SE(SVSx)∩SE(SVSy)� denotes the number of common sequence elements
between SVSx and SVSy.

In traditional K-means, how to make a rapid and accurate parameter K is a critical
problem. The selection of K has a great influence on the clustering results. In this paper, to
adjust the number of clusters dynamically, adaptive K function is proposed.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4330 – 4336

4332

Definition 1. Suppose that SVS is any software vulnerability sequence in SVSD. K
represents the number of clusters, the center of software vulnerability cluster SVCP is described
as SVCCP. The adaptive K function is shown as follows.

2

,

1

2

)),(1(

)),(1(

)Adaptive(K
qP

qP

K

P SVCSVS
P

SVCCSVCCSVSimMinN

SVCCSVSSVSim
P

 (1)

Wherein, N is the number of objects in SVSD. P=1,2,…,K-1; q= P+1,P+2,…,K. The

adaptive K is gained by the minimum Adaptive(K). In this way, the average dissimilarity
between software vulnerability sequences in the same cluster should be as small as possible.
And the minimum value of dissimilarity between each cluster needs to be the largest.

4. The SVAAKSC Method
Software vulnerability analysis method based on adaptive-K sequence clustering

named SVAAKSC includes five stages. First and foremost, on the basis of the collected
common software vulnerabilities, SVSD is established. Afterwards, the objects in SVSD are
preprocessed to equal length vectors. Moreover, by adaptive-K-based sequence clustering
algorithm, K vulnerability centers are gained. Next through two stage similarity measure, the
most similar vulnerability to DV can be get. Finally, the analysis report of the detected
vulnerability is output. The framework of SVAAKSC is shown as Figure 1.

Figure 1. The Framework of SVAAKSC

4.1. SVSD Establishing
Common software vulnerabilities are collected to establish SVSD. SVSD is composed

by five-dimensional tuples, and each tuple is expressed as <SVSN, SVS, SVSTY, SVSINF,
SVSRANK>. Wherein, SVSN is the number of SVS. SVSTY indicates the SVS type. SVSINF is
the relevant feature information of SVS. SVSRANK denotes the SVS rank.

4.2. SVS Preprocessing

As to the lengths of software vulnerability sequences in SVSD are not the same usually.
Therefore, it is necessary to preprocess them. By scanning the SVSD once, item set
L={a1,a2,…,am} and SSVSE={SE1,SE2,…,SEr,…,SE|SSVSE|} are gained.

Common
software

vulnerabilities
collection

Software
source
codes

Preprocess

N software
vulnerability

vectors

Adaptive-K
based

sequence
clustering

K
vulnerability

centers

Preprocess

Detected
vulnerability

Detected
vulnerability

vector

The first
stage

similarity
measure

Output
the

analysis
report

Obtain the
most similar
vulnerability
to detected
vulnerability

Y

The second
stage

similarity
measure

Similar?

N

SVSD

TELKOMNIKA ISSN: 2302-4046

Software Vulnerability Analysis Method Based on Adaptive-K Sequence Clustering (Di Wu)

4333

In accordance with the support relationships between SVSx and SEr in SSVSE, each
SVSx can be preprocessed as a |SSVSE|-dimensional vector. If SVSx supports SEr, then the
value is 1, otherwise, the corresponding value is 0.

For example, SVSD={SVS1, SVS2, SVS3}. SVS1=aba, SVS2=bcaa, SVS3=cbba.
According to simple analysis, L={a,b,c}, SSVSE={aa,ab,ac,ba,bb,bc,ca,cb,cc}, |SSVSE|=9. The
pretreatment results are SVS1={1,1,0,1,0,0,0,0,0}, SVS2={1,0,0,1,0,1,1,0,0}, SVS3={0,0,0,1,1,
0,1,1,0}.

4.3. Adaptive-K-Based Sequence Clustering

In traditional K-means sequence clustering algorithm, it needs to set parameter K ahead
of time by user. In this paper, a novel AKSC (adaptive-K-based sequence clustering) algorithm
is presented. It only needs to restrict the range of K. As a result, the similarities of SVS in the
same are cluster as large as possible, in the meantime, the similarities between different
clusters are as small as possible. By applying AKSC algorithm, SVS in SVSD are clustered into
K clusters. K adaptive software vulnerability clusters can be gained. The specific process of
AKSC is shown as follows.

Algorithm AKSC (SVSD, N, SVS, Kmax)
Input: SVSD: software vulnerability sequence database; N: the number of SVS in

SVSD; SVS: any software vulnerability sequence of SVSD; Kmax: The value of the largest K.
Output: K adaptive software vulnerability clusters
BEGIN
Step 1: For K=2 to Kmax
Step 2: In SVSD, select K SVS as initial clustering centers randomly;
Step 3: Compute the similarity between SVS in SVSD and current clustering centers,

each SVS is assigned to the most similar cluster;
Step 4: For each cluster, calculate the average similarities of SVS, clustering centers

are updated, repeat the Step3 and Step4, until the clustering results do not change any more,
jump to Step 5;

Step 5: According to formula (1), the corresponding Adaptive(K) is obtained;
Step 6: Compared with the value of the present Adaptive(K) and the former one, the

corresponding K of the smallest one is saved;
Step 7: Output K adaptive software vulnerability clusters.
END
Wherein, in general conditions, 2 ≤ K ≤ Kmax. And the parameter K is much less than N,

it is the number of SVS in SVSD. We set Kmax is N or Nln2 . Here, the lower limit of the

corresponding integer value is used. The optimal clustering results can be obtained effectively.
The impact of inaccurate selection of parameter K for the clustering quality of traditional K-
means is reduced greatly.

4.4. Two-Phase Similarity Measuring

After SVS preprocessing, the DV (detected vulnerability) and objects in SVSD are all
preprocessed to equal-dimensional vectors. Here, DV is extracted from the software source
codes after static analysis, and further needed to analyze its vulnerability feature according to
some certain rules.

In AKSC, the similarities between SVS are calculated by utilizing software vulnerability
sequence elements similarity SVSim(SVSx,SVSy). It is designed to analyze to the sequence
elements that SVSx and SVSy contains. Thus the software vulnerabilities analysis efficiency can
be enhanced greatly.

The process of similarity measurement is divided into two phases. In the first stage, the
similarities of DV and K software vulnerability clustering centers are computed. If the most
similar software vulnerability clustering center to DV is found, the second stage of similarity
measure will be started. In the most similar software vulnerability cluster, by calculating
similarities between SVS and DV, the most similar SVS to DV can be gained. The analysis
report of DV is recorded. It is mainly about the relevant feature information SVSINF of the
corresponding SVS. On the contrary, if DV is not similar with any software vulnerability
clustering centers, then it can be viewed as a software operation sequence. The corresponding

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4330 – 4336

4334

analysis report is outputted. In a word, whether DV is a real SVS or not will be determined in
accordance with two-phase similarity matching.

5. Experimental Results and Analysis

In order to verify the performance of SVAAKSC algorithm, FTP server software wu-ftpd
under linux is adopted in this section. Traditional static analysis tool ITS4 is also used during
comparing the false positive rate analysis. Wherein, the effective source code lines of wu-ftpd
are 13582, and the vulnerability code lines are 64. 10000 software vulnerability sequences were
collected to establish SVSD.

Our experiments are run on the Intel Core 2 Duo 2.93GHz CPU, 2GB main memory and
Microsoft XP. All algorithms are written in MyEclipse 8.5. We compare SVAAKSC with DVCMA
[9] in false positive rate and analysis efficiency.

5.1. False Positive Rate Analysis

In this section, the false positive rates of three algorithms are analyzed by the formula
as follows.

m

t v

arvt
FPR Num

Num

m
R

1

)1(
1

∗ 100% (2)

Wherein, Numarvt denotes the number of analyzed real vulnerabilities in the t-th false

positive rate analysis. Numv is the number of vulnerabilities in software. We set m=10. The
analysis results of false positive rates of SVAAKSC, DVCMA and ITS4 algorithms are shown as
Table 1.

Table 1. The Analysis Results of False Positive Rates
Algorithm or Analysis Tool False Positive Rate（ %）

SVAAKSC 25.4%
DVCMA 30.8%

ITS4 36.9%

From Table 1, we can see that in FTP server software wu-ftpd, the average false

positive rate of SVAAKSC is lower than DVCMA and static analysis tool ITS4. Thus the
meaning of clustering results can be explained accurately by SVAAKSC.

For SVAAKSC, by adaptive-K-based sequence clustering algorithm, SVSD is clustered
by adaptive-K-based sequence clustering algorithm AKSC. It does not set cluster number K in
advance, but only restrict its range. By comparing with all the Adaptive(K), the object with the
smallest Adaptive(K) is deemed to the optimal K. The impact of inaccurate selection of
parameter K for the clustering quality is reduced greatly. The optimal clustering results of
software vulnerabilities can be gained. The false positive rate will be reduced greatly. In this
way, the final obtained SVS is the most similar with DV.

5.2. Analysis Time Test

To test the software vulnerabilities analysis time of SVAAKSC and DVCMA, Num
denotes the number of software vulnerabilities. We set Num=1000, 2000, 3000, 4000, 5000.
The test results of the running time of the two algorithms are shown as Figure 2.

As shown in Figure 2, the running times of two algorithms are growing linearly with
increasing Num. In accordance with the support relationships between software vulnerability
sequence SVS and sequence element SEr in SSVSE, each SVS can be preprocessed as a
|SSVSE|-dimensional vector. If SVS supports SEr, then the value is 1, otherwise, the
corresponding value is 0. Furthermore, on the basis of the number of all sequence elements
and the number of common sequence elements between two SVS, the computation complexity
of the similarity measurement in SVAAKSC is decreased. Finally, the software vulnerability
analysis time is improved effectively.

TELKOMNIKA ISSN: 2302-4046

Software Vulnerability Analysis Method Based on Adaptive-K Sequence Clustering (Di Wu)

4335

Figure 2. Running Times of SVAAKSC and DVCMA

6. Conclusion
In this work, in order to improve the performance of the false positive rate of software

vulnerabilities analysis time, software vulnerability analysis method based on adaptive-K
sequence clustering named SVAAKSC is discussed. First and foremost, common software
vulnerabilities are collected to establish SVSD. Afterwards, according to the support
relationships between software vulnerability sequences SVS and sequence elements, each
SVS can be preprocessed as equal-dimensional vector. Moreover, on the basis of a new
definition of adaptive K function, a novel adaptive-K-based sequence clustering algorithm AKSC
is presented. It does not set cluster number K in advance, but only restrict its range. The object
with the smallest Adaptive(K) is deemed to the optimal K. By adopting AKSC algorithm, K
vulnerability centers of SVSD are gained. The impact of inaccurate selection of parameter K for
the clustering quality is reduced greatly. The optimal clustering results of software vulnerabilities
can be gained. Afterwards, in accordance with two-phase similarity matching, whether detected
vulnerability DV is a real SVS or not will be determined. On the basis of the number of all
sequence elements and the number of common sequence elements between two SVS, the
computation complexity of the similarity measurement is decreased. Finally, the analysis report
of the detected vulnerability is output. Our experimental results show that SVAAKSC can
analyze DV of software source codes with lower false positive rate, and better vulnerability
analysis time.

Acknowledgements
This work is supported by the National Natural Science Foundation of China

(No.61170190), Youth Foundation of Hebei Educational Committee (No.Q2012070) and
Science and Technology Research and Development Program of Handan (No:1321103077-3).
The authors also would like to express their gratitude to the reviewers, whose valuable
comments are very helpful in revising the paper.

References
[1] Li QY, Luo L. Determining the Minimal Software Reliability Test Effort by Stratified Sampling.

TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(8): 4399-4406.
[2] Ren JD, Xie YJ, Zhang AG, et al. A Closed Sequential Pattern Mining Algorithm for Discovery of the

Software Bugs Feature. Journal of Computational Information Systems. 2011; 7(7): 2322-2329.
[3] Sun SJ, Xiao J. A Software Reliability GEP Model Based on Usage Profile. TELKOMNIKA Indonesian

Journal of Electrical Engineering. 2012; 10(7): 1756-1764.
[4] Ning JF, Hu M. Study on Software Quality Improvement based on Rayleigh Model and PDCA Model.

TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 11(8): 4609-4615.
[5] Eichinger F, Böhm K, Huber M. Mining Edge-Weighted Call Graphs to Localize Software Bugs.

Lecture Notes in Computer Science. 2008; 5211: 333-348.
[6] He H, Zhao L, Li Q, et al. Analyze Software Defects with Program Structure Dependency.

Proceedings of the 2nd International Conference on Computer and Applications (CCA). 2013; 17: 53-
57.

0

150

300

450

600

750

1000 2000 3000 4000 5000

R
un

ni
ng

 ti
m

e
 T

/s

Num

SVAAKSC DVCMA

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4330 – 4336

4336

[7] Mahaweerawat A, Sophatsathit P, Lursinsap C. Adaptive Self-Organizing Map Clustering for Software
Fault Prediction. Proceedings of the 4th Intl. Joint Conference on Computer Science and Software
Engineering. Thailand. 2007: 35-41.

[8] Masri W, Podgurski A. Application-based Anomaly Intrusion Detection with Dynamic Information Flow
Analysis. Computers and Security. 2008; 27(5): 176-187.

[9] Wang YY, Wang YN, Ren JD. Software Vulnerabilities Detection Using Rapid Density-based
Clustering. Journal of Computational Information Systems. 2011; 8(14): 3295-3302.

[10] Ren JD, Cai BL, He HT, et al. A Method for Detecting Software Vulnerabilities Based on Clustering
and Model Analyzing. Journal of Computational Information Systems. 2011; 7(4): 1065-1073.

