
TELKOMNIKA Indonesian Journal of Electrical Engineering 
Vol.12, No.6, June 2014, pp. 4521 ~ 4527 
DOI: 10.11591/telkomnika.v12i6.5391        4521 

  

Received December 26, 2013; Revised February 23, 2014; Accepted March 9, 2014 

Object-Oriented Publish/Subscribe System 
 
 

Biao Dong 
Nanjing Institute of Industry Technology 

No.1, Yangshan North Road, Qixia District, Nanjing 210023, China 
e-mail: dongb@niit.edu.cn 

 
 

Abstract 
Existing methodologies based on the request/response model for system software design, rooted 

in principles of object-oriented design, lead to tightly-coupled interactions, and lack coordination capacities. 
The publish/subscribe (P/S) paradigm is particularly suitable for loosely-coupled communication 
environment. A design of event and subscription models under an object- oriented environment was 
motivated by the idea of using P/S paradigm for an object-oriented environment. The P/S service is 
comprised of two subsystem-compiler and executor. In each subsystem, its form, working process, and 
typical algorithms are analysed from the point of object-oriented and technology of P/S paradigm 
separately. Experiment was simulated in the following two aspects: user’s model and middle code 
generation, and shows that using the P/S service improves the usability of P/S systems.  

  
Keywords: object-oriented, publish/subscribe, compiler subsystem, executor subsystem 
 

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 
 
 
1. Introduction 

In the distributed environment of enterprise internal network scale, the middleware 
based on remote procedure call (RPC) is successful [1], however, in the internet environment, it 
has the following problems: 

(1) Communication model. The RPC-based middleware does not support the 
participants in the communications completely decoupling in space, time and control flow. 
Meanwhile, the communication model involved in client server interaction, is one to one model, 
isn't many to many model. 

(2) Reactivity to input, exceptions and internal/external changes. The RPC-based 
middleware supports only a predefined serial and linear processing path, does not support 
dynamic (nonlinear, feedback processing), concurrent processing path. At the same time, it only 
reflects the closed environment, lack of ability to respond to external environment. 

As the application environment of the local, closed and static state to Internet, open and 
dynamic, loosely-coupled and asynchronous implementation capacity in communication 
paradigm is an inevitable trend [2]. The publish/subscribe paradigm which offers asynchronous, 
multipoint communication, and support the participants of the communication completely 
decoupling in time, space and control flow, can well meet the large-scale, highly dynamic 
Internet environment [3, 4]. 

In an object-oriented environment[5], ways to realize P/S service has three kinds:  
(1) Expansion method. Programmers determine where needs P/S service, and add the 

appropriate monitoring and operation code here.  
(2) Reconstruction method. Through the reconstruction of the original programming 

language, programming language was transformed into a kind of programming language that 
supports P/S service.  

(3) Redesign of P/S-based programming languages.  
The first way is the most simple, but the system's P/S services are relatively simple and 

limited; the second approach is a compromise, P/S service function is limited by the source 
language; the third way is a complete solution, but due to the complexity of compiler itself, the 
workload for adding P/S service will be very heavy.  

This paper proposes a P/S service model in an object-oriented environment. P/S 
service implementation approach was selected with a similar method to that of the third way. 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 6, June 2014:  4521 – 4527 

4522

We don’t design a new object-oriented environment that support P/S service, but integrate P/S 
service into a known language model. This paper addresses two issues:  

(1) The establishment of event model and subscription model in an object-oriented 
environment.  

(2) The design and implementation of compiler and executor subsystem for an object-
oriented environment that support P/S service. 
 
 
2. Event Model and Subscription Model 

In an object-oriented environment, communications between different objects are 
carried out by the event delivery. When an object receives an event, a method is called, 
therefore, the method calls can be treated as events. P/S system's events are considered as 
value events, a value event can be mapped to one or several method events. 

Definition 1 method event. Method event in an object-oriented environment is defined 
as follows: 

 
Create Event <Event> <EventClause> 
<Event Clause>=[Before|After] <Name.MethodName> 
 
The Event is a string uniquely identifying event, the Before and After events are 

produced before and after method execution, the Name is a class or object name, and the 
MethodName is a method name. 

In an object-oriented system, method events are divided into pre-execution and post-
execution method events, and include two kinds of method events: class method events and 
general method events. Class method events are generated before and after invoking class 
methods, such as creating an instance, deleting an instance. Similarly, general method events 
are generated before and after executing object methods. 

Definition 2 subscription. Subscription in an object-oriented environment is defined as 
follows: 

 
Create Sub <Subscription-Name> 
On <Event-Trigger > 
Condition: <Condition> 
Act: <Action> 
 
The Subscription-Name is a string uniquely identifying a subscription, the Event-Trigger 

is a list of Method events, the Condition is a Boolean function, and the Action denotes a 
procedure defined by an application program. As used in this definition, the subscription means 
as follows: when a method event in an event-trigger occurs, the condition is evaluated, and then 
if the condition is true, actions are executed. 
 
 
3. Compiler Subsystem 
3.1. Object Technology 

Figure 1 shows a compiler subsystem for object oriented P/S systems.  
 

 
Figure 1. Compiler subsystem 



TELKOMNIKA  ISSN: 2302-4046  

Object-Oriented Publish/Subscribe System (Biao Dong) 

4523

The working process of compiler subsystem is divided into two phases: the first phase 
is initialization, the second will focus on compiling. Now the compiler is capable of handling 
object. 

The compiler subsystem completes the following works in the initialization phase: firstly, 
the compile time class library importer loads class library to provide support for object-oriented 
P/S systems on establishing a basic compiler time class library; secondly, Users import custom 
classes into the compile time class library by the compile time class library importer; finally, in 
the object compiler interface, the compiler subsystem establish the class type information, the 
class helper instance for each imported class, and relations between a class type and 
corresponding class helper instance. 

Definition 3 external procedure. External procedures are virtual procedures that could 
be anything when compiled, including class methods, attributes, methods and events. External 
procedures are used to store class type information for the compiler subsystem. 

The compiler subsystem completes the following works in the compile phase: when 
operations on objects are detected, the compiler checks class type tables whether class type 
information corresponding to the objects exists or not. If the class type information exists, the 
compiler finds the associated class helper which accesses the compile time class library 
through the compile time library importer. There are two main aspects to the class helper: 
helping the compiler for generating push instructions and filling in the import descriptions. 
According to the caller's parameter information acquired from the class items of the compile 
time class library, the compiler generates push instructions, creates or finds the number of the 
called external procedures, and then, fills in the import descriptions of the external procedures 
import table. If the class type information doesn't exist, the compiler provides false alarms. After 
the above works are completed, the compiler is capable of processing objects, and has been 
extended to the compiler subsystem. 
 
3.2. Object Supporting Environment 

 The object supporting environment consists of three parts describing an approach to 
dealing with object. The first part is called the object compiler interface, which is divided into 
three sections: the class type table, the class helper, and the external procedure import table. 
The second part is called the compile time class library importer, which preserves lists of 
classes imported into the compile time class library. The last part is called the compile time 
class library, which is used to specify the compile time class sets and the compile time class 
item sets. 

Each instance of a class type has its own class helper. The class helper provides 
support for the compiler to generate intermediate code at two ways. One is to invoke methods 
on a class. This second way is to support the basic operations of a class, such as cast, 
assignment, comparison and other operations. When the operations of class, including the 
calling class methods or the general methods, accessing properties, comparing objects, casting 
and assigning null, are handled, the compiler creates or finds an external procedure to handling 
this operation. If it's first time that the application calls the object's methods, properties and 
methods of class, the compiler will fill the appropriate procedure identification into the class 
items; if not, the compiler finds the procedure number. Method of class helper are classified into 
two categories: 

(1) Finding method, which is directly used for finding the class item corresponding to the 
class method in the compile time class library according to the class method name. 

(2) Calling method, which is directly used for creating an external procedure the 
application calls class methods. 

Each external procedure corresponds to an import declaration. The import declaration 
used for the class library contains all information needed for external function registered to the 
compiler. When the compiler generates intermediate code, the import declaration must be 
written to the intermediate codes. When executor installs the external procedure, it has to read 
all information of external procedure. An import declaration is a string containing the following 
structure: class name+'|'+method name+'|'+cc+parameters, where cc is a calling convention, 
and the parameters decided by compile time class item is a string consisting of 1 and 0. 
 
 
 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 6, June 2014:  4521 – 4527 

4524

3.3. P/S Support for the Compiler Subsystem 
In order to provide for P/S service support, the compiler subsystem completes two 

works. First of all, subscriptions are translated into the following procedure, and then the 
procedure are compiled into the intermediate codes. 

 
Procedure <Subscription name> (<Triggering event parameter list>) 
Begin 
If <conditions> Then <actions>; 
End. 
Second, the association between event and subscription name is established. 

 
 
4. Executor Subsystem 
4.1. External Procedure Execution Technology 

Figure 2 shows an executor subsystem for object oriented P/S Systems.  
 
 

 
 

Figure 2. Executor Subsystem 
 
 

The working process of executor subsystem is divided into two phases: the first phase 
is initialization, the second phase will focus on execution. Now the executor is capable of 
handling external procedures. 

The executor subsystem completes the following works in the initialization phase: firstly, 
the run time class library importer loads the classes to provide support for object oriented P/S 
systems on establishing basic run time class library; secondly, users import custom classes into 
the run time class library by run time class library importer; finally, in the external procedure 
execution interface, the external procedure installer sets up the external procedure records for 
each installed external procedure, and relations between the external procedures and the 
corresponding external procedure records. 

The executor subsystem completes the following works in the execution phase: when 
the external procedure is called, the external procedure executor checks whether the external 
procedure record corresponding to the external procedure exists or not. If the external 
procedure record exists, the external procedure executor finds the associated external 
procedure record which accesses run time class library through the run time library importer. If 
the the external procedure record doesn't exist, the external procedure executor provides false 
alarms. After the above works are completed, the executor is capable of processing external 
procedures, and has been extended to the executor subsystem. 
 
4.2. External Procedure Supporting Environment and Its Formal Description 

During the execution phase of an external procedure, there are several general 
principles that should be followed. 

(1) Calling conventions. The calling conventions influence two things: how parameters 
are passed to a function or procedure, how a caller's stack is cleaned up when the caller 
returns. 



TELKOMNIKA  ISSN: 2302-4046  

Object-Oriented Publish/Subscribe System (Biao Dong) 

4525

(2) Method call. Methods are functions and procedures that apply only to objects of a 
particular class and its descendants. Methods differ from ordinary procedures and functions in 
that every method has an implicit parameter called Self, which refers to the object that is the 
subject of a method call. Self is an address pointer. Within the implementation of a method, the 
identifier Self references the object in which the method is called. 

(3) Returning results. There are two types of mechanisms for returning values. The first 
mechanism is to put the results in the ST(0) register of the float point unit(FPU), which 
corresponds to the top of the FPU stack. Secondly, put the results in the CPU registers. 

(4) Constructors and destructors. Constructors and destructors use the same calling 
conventions as other methods, except that an additional Boolean flag parameter is passed to 
indicate the context of the constructor or destructor call. The flag parameter behaves as if it 
were declared before all other parameters. 

(5) Virtual methods. A virtual method is a method that is bound at runtime instead of at 
compile time. At runtime, the method in the class's runtime tables, specifically the virtual method 
table(VMT), are looked up, and the method for the actual class is called. The actual class might 
be the compile time declared class, or it might be a derived class-it doesn't matter because a 
VMT provides the pointer to the correct method. 

(6) Passing parameters. Passing parameters define a number of different aspects of 
method invokation: where parameters are located: in registers or on the stack, in which order 
parameters are passed: right to left or left to right, who is responsible for cleaning up the 
parameters afterwards, the caller or the callee. 

Definition 4 external procedure supporting environment. The external procedure 
supporting environment EE=<T1, T2, CSrun, Stack, Tother>, where T1: the external procedure 
record table, T2: the class type table, CSrun: the runtime library; Stack: the data stack of the 
executor subsystem; Tother: the other tables in the executor subsystem. 

Definition 5 execution vector. The external procedures can be performed, if and only if 
the external procedure supporting environment obtains an execution vector ∂=<∂1, ∂2, ∂3>. 
Where: ∂1 is a subset of the set {EAX, ECX, EDX, CurrStack}, which is associated with the input 
data, ∂2 is a procedure pointer, ∂3 is an element of the set {AL, AX, EAX, EDX: EAX, ST(0)}, 
which is used to save the returning results. 

Definition 6 transform. Let ExtProi be the current being invoked external procedure. 
There are six kinds of transforms defined as follows: 

(1) ∆1 (EE, ExtProi)=cc, where cc is a calling convention of the ExtProi. 
(2) ∆2 (EE, ExtProi)=Fself, where Fself is a parameter Self of the ExtProi. 
(3) ∆3 (EE, ExtProi)=n; where n is returning results of the ExtProi. 
(4) ∆4 (EE, ExtProi)=PList, which make EE to meet the fourth principle. 
(5) ∆5 (EE, ExtProi)=ptr, where ptr is a calling pointer of the ExtProi. 
(6) ∆6 (EE, ExtProi)=ParList, which make EE to meet the sixth principle. 
Theorem 1. ∆i (1 ≤ i ≤ 6)) is achievable. 
Proof: EE=<T1, T2, CSrun, Stack, Tother>, where T1 is the external procedure record table, 

which has an external procedure import description consisting of a string that contains cc.For 
other transforms, we can verify one by one. 

Theorem 2: The executor subsystem can perform external procedures. 
Proof: By the transforms ∆6, ∆4, ∆2 and ∆1, the executor subsystem can get ∂1. By the 

transform ∆5, ∂2 can be obtained. By the transform ∆3, n can be obtained, and then according to 
the type of n, the executor subsystem can get ∂3. Thus, By the transforms ∆6, ∆5, ∆4, ∆3, ∆2 and 
∆1, the executor subsystem gets<∂1, ∂2, ∂3>. Therefore, the executor subsystem can perform 
external procedures. 
 
4.3. Structure and Process of the External Procedure Executor 

The following conclusions can be made from the above analysis: First, the external 
procedure executor performs the transforms ∆1, ∆2, ∆3, ∆4 and ∆5, the order of executing the 
transforms and the algorithms corresponding to the transforms must be specifically designed 
according to the type of the external procedures. Secondly, the external procedure executor 
performs the transform ∆6 to obtain <∂1, ∂2, ∂3>. Finally, the external procedure executor 
performs the external procedure. Therefore, the external procedure executor has a hierarchical 
structure, which is divided into three parts from top to bottom, namely, the classification 



                       ISSN: 2302-4046 
           

 TELKOMNIKA Vol. 12, No. 6, June 2014:  4521 – 4527 

4526

functions, the pre-handling and post-handling functions for the underlying call, and the 
underlying call functions. 

The work processes of the external procedure executor are as follows: 
(1) According to the external procedure record, the external procedure executor calls 

the corresponding classification function. 
(2) The classification functions generate the call parameters according to the 

characteristics of  each type of  the call functions. 
(3) According to the different calling conventions, method calls and parameter-passing 

modes, the external procedure executor pre-handles the call parameters, and post-handles the 
results returned by the underlying call functions. 
 
4.4. P/S Support for the Executor Subsystem 

The precondition for providing P/S services is that the object-oriented system must have 
a unified event detection mechanism. The timing of the pre-execution method events' detection 
is before calling the classification functions. Then, all of the required parameters including the 
external procedure identification, pointers and external procedure parameters have been 
produced, the executor subsystem calculate the required subscriptions according to the type of 
external procedure and the parameters at the top of stack. The timing of the post-execution 
method events' detection is at the end of calling the classification functions and before returning 
the caller. Then, the executor subsystem can get the generated method event's parameter 
values according to the stack of the external procedure executor and the type of the 
classification functions. 
 
 
5. Simulation Experiment 

By P/S mechanism, the simulation experiment realizes the following function: when the 
application displays a form f, a dialog box titled ''Test'' are displayed on screen. The experiment 
is discussed as follows: 

(1) Coding to show a form f. 
 
var f:TForm; 
begin f:=TForm.CreateNew(f,0); 
f.Show; 
while f.Visible do 
Application.ProcessMessages; 
f.free; 
end. 
(2) Defining an event. 
Create Event CreateForm After TForm.CreateNew(Aowner, Dummy)；  
(3) Defining a subscription. 
Create Sub ShowForm 
On CreateForm 
Condition: Aowner=f; 
Act: Begin 
MessageBox(0,''Test'',''Form f!'',0); 
End. 
 
The compiler subsystem generates intermediate codes for the form f and the 

subscription ShowForm, and then establishes association between the method event 
CreateForm and the subscription ShowForm. After the executor subsystem performs 
CreateNew(f, 0), a classification function is called. Before the function returns, the event 
CreateForm is triggered. The elements on the top of the external procedure executor's stack 
stands for the actual value that the executor subsystem want to use. Then the intermediate 
codes corresponding to subscription ShowForm are executed. 
 
 
 
 



TELKOMNIKA  ISSN: 2302-4046  

Object-Oriented Publish/Subscribe System (Biao Dong) 

4527

6. Conclusion 
In this paper, we propose a compiler subsystem and an executor subsystem for object-

oriented P/S systems. Event model and subscription model are defined in an object-oriented 
environment. We illustrates a conclusion through simulation. The result shows that the two 
subsystems can easily be constructed, and improve the usability of P/S systems. 
 
 
Acknowledgements 

This work was sponsored by Qing Lan Project 2012(Jiangsu Province, China) and open 
fund project of Jiangsu provincial research and development center of intelligent sensor network 
engineering technology, China(ZK11-02-01, research on publish in large-scale event system). 
 
 
References 
[1] Birman, Kenneth P. Guide to Reliable Distributed Systems. London: Springer London. 2012: 185-247. 
[2] Kaye, Doug. Loosely coupled: the missing pieces of Web services. California: RDS Strategies LLC. 

2003. 
[3] Fotiou, Nikos, Dirk Trossen, George C Polyzos. Illustrating a publish subscribe internet architecture. 

Telecommunication Systems. 2012; 51(4): 233-245. 
[4] Chen H, Kim M, Lei H, et al. Elastic and scalable publish/subscribe service. U.S. patent No. 

20,130,007,131. 
[5] Parkinson, Matthew, Gavin Bierman. Aliasing in Object-Oriented Programming. Types, Analysis and 

Verification. Berlin: Springer Berlin Heidelberg. 2013: 366-406. 
 


