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Abstract 
For the multisensor system with uncertain noise variances, using the minimax robust estimation 

principle, the local and weighted measurement fusion robust time-varying Kalman predictors are presented 
based on the worst-case conservative system with the conservative upper bound of noise variances. The 
actual prediction error variances are guaranteed to have a minimal upper bound for all admissible 
uncertainties of noise variances. A Lyapunov approach is proposed for the robustness analysis and their 
robust accuracy relations are proved. It is proved that the robust accuracy of weighted measurement 
robust fuser is higher than that of each local robust Kalman predictor. Specially, the corresponding steady-
state robust local and weighted measurement fusion Kalman predictors are also proposed and the 
convergence in a realization between time-varying and steady-state Kalman predictors is proved by the 
dynamic error system analysis (DESA) method. A Monte-Carlo simulation example shows the 
effectiveness of the robustness and accuracy relations. 
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1. Introduction 

Multisensor information fusion is widely applied to many filelds including defence, target 
tracking, GPS position and so on [1, 2]. Its aim is to combine the local estimators or local 
measurements to obtain the fused estimators of the system state, whose accuracy is higher 
than that of each local estimator. Kalman filtering approach is the basic tool of the information 
fusion with the assumption that the model parameters and noise variances are exactly known. 
When there exist uncertainties, the performance of the Kalman filter can be very poor [3], and 
an inexact model may cause the divergent filter. In order to handle this problem, various studies 
on designing of the robust Kalman filters have been reported [4-6]. The robust Kalman filters 
guarantee to have a minimal upper bound of the actual filtering error variances for all admissible 
uncertainties.  

 For the systems with the model parameters uncertainties, there are two important 
approaches for designing the robust Kalman filters such that the Riccati equation approach [4], 
[7-8] and the linear matrix inequality (LMI) approach [5-6], [9]. The disadvantage of these two 
approaches is that only model parameters are uncertain while the noise variances are assumed 
to be exactly known. The robust Kalman filtering problems for systems with uncertain noise 
variances are seldom considered [10, 11], and the robust information fusion Kalman filter are 
also seldom researched [12, 13]. 

For information fusion based on the Kalman filtering, there exist two methodologies [14, 
15], the state and measurement fusion methods, the former method can give a fused state 
estimator by combing or weighting the local state estimators, while the later fusion method is to 
weight all the local measurement to obtain a fused measurement equation, and then to obtain 
global optimal state estimator based on a single Kalman filter. 

In this paper, using the minimax robust estimation principle, the local and weighted 
measurement fusion robust time-varying and steady-state Kalman predictors are presented 
based on the worst-case conservative system with the conservative upper bound of noise 
variances. The convergence in a realization between the time-varying and steady-state Kalman 
predictors is rigorously proved by the dynamic error system analysis (DESA) method [16, 17]. 
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Furthermore, a Lyapunov equation approach is presented for the robustness analysis, which is 
different from the Riccati equation approach and the LMI approach. The concept of the robust 
accuracy is given and the robust accuracy relations are proved, it is proved that the robust 
accuracy of the robust weighed measurement fusion Kalman predictor is higher than that of 
each local robust Kalman predictor. 

The remainder of this paper is organized as follows. Section 2 gives problem 
formulation. The robust weighted measurement fusion time-varying Kalman predictors are 
presented in Section 3.  The robust local and fused steady-state Kalman predictors are 
presented in Section 4. The robust accuracy analysis is given in Section 5. The simulation 
example is given in Section 6. The conclusion is proposed in Section 7. 
 
 
2. Problem Formulation 

Consider muiltisensor linear disceret time-varying system with uncertain noise varaince 
and identical measurement matrix. 

 

         1x t t x t t w t                                                                                (1) 

 

          , 1, ,i iy t H t x t t t i L                                                                       (2) 

 
Where t represents the discrete time,   nx t R  is the state,   m

iy t R is the 

measurement of the thi subsystem,   rw t R is the input noise,   mt R  is the common 

disturbance noise,   m
i t R  is the measurement noise of the thi subsystem,  t ,  t and

 H t are known time-varying matrices with appropriate dimensions. L is the number of sensors. 

Assumption 1.  w t ,  t and  i t are uncorrelated white noises with zero means and 

unknown uncertain actual variances  Q t ,  R t and  
i

R t at time t , respectively,  Q t ,  R t

and  
i

R t are known conservative upper bounds of  Q t ,  R t and  
i

R t , satisfying: 

 

           , ,
i i

Q t Q t R t R t R t R t      , 1, ,i L  , t                                         (3) 

 
Assumption 2. The initial state  0x  is independent of  w t ,  t and  iv t and has 

mean value  and unknown uncertain actual variance  0 | 0P which satisfies: 

 

   0 | 0 0 | 0P P                                                                                                (4) 

 
Where  0 | 0P is a known conservative upper bound of  0 | 0P . 

Assumption 3. The system (1) and (2) is uniformly completely observable and 
completely controllable. 

Defining: 
  
      , 1, ,i iv t t t i L                                                                                    (5) 

 
Where  iv t are white noises with zero means, the conservative and  actual variances 

and cross-covariances are given as: 
 

     
i ivR t R t R t   ,      

i ivR t R t R t   , 1, ,i L                                       (6) 

 

   
ijvR t R t ,    

ijvR t R t , i j                                                                      (7) 

From (3), we have: 
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i iv vR t R t , 1, ,i L  , t                                                                              (8) 

 
 

3. Robust Weighted Measurement Fusion Time-varying Kalman Predictors 
Introduce the centralized fusion measurement equation. 
 

             c c c cy t H t x t v t eH t x t v t                                                          (9) 

 
With the definitions: 
  

      TT T
1 , ,c Ly t y t y t    ,       TT T, ,cH t H t H t    ,       TT T

1 , ,c Lv t v t v t     

 T , ,m me I I                                                                                                       (10) 

 
And the fused noise  cv t  respectively has the conservative and actual variances as: 

 

i

i

i

v

c
v

v

R R R

R
R

R R

R R R

 





 

 
 
   
 
  



  

 



 ,

i

i

i

v

c
v

v

R R R

R
R

R R

R R R

 





 

 
 
   
 
  



  

 



                                         (11) 

 
Applying the weighted least square method [18], from (9), we have the conservative 

weighted fusion measurement equation. 
 

       M My t H t x t v t                                                                                      (12) 

 
Where  My t is the conservative weighted fusion measurement and  Mv t is the 

conservative fused measurement white noise with conservative variance  MR t , such that: 

 
  T 1 1 T 1( ( ) ) ( ) ( )M c c cy t e R t e e R t y t                                                                          (13) 

  
  T 1 1 T 1( ( ) ) ( ) ( )M c c cv t e R t e e R t v t                                                                             (14) 

 
T 1 1( ) ( ( ) )M cR t e R t e                                                                                               (15) 

 
Based on the worst-case conservative system (1) and (12) with Assumptions 1-3 and 

conservative upper bounds  Q t and  
ivR t , the conservative optimal weighted measurement 

fused time-varying Kalman predictors  ˆ |Mx t N t , 1N  are given as. 

When 1N  , the one-step predictor is given as: 
 

         ˆ ˆ1 | | 1M M M M Mx t t t x t t K t y t                                                            (16) 

 
       =M Mt t K t H t                                                                                       (17) 

 

                1T T= | 1 | 1M M M MK t t P t t H t H t P t t H t R t


                               (18) 

 
                   T T T1 | | 1M M M M M M MP t t t P t t t t Q t t K t R t K t                (19) 
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With  ˆ 1 | 0Mx  ,    1| 0 0 | 0MP P , and  1|MP t t satisfies the Riccati equation. 

 

                  
         

1T T

T T

1| | 1 | 1 | 1

| 1

M M M M M

M

P t t t P t t P t t H t H t P t t H t R t

P t t t t Q t t



  

      
    

(20) 

 
When 2N  , the multi-step predictor is given by: 
 

     ˆ ˆ| , 1 1 |M Mx t N t t N t x t t     , 2N                                                        (21) 

 
With the definition          , 1 2 , , nt i t t i t t I        .     

The conservative N -step prediction error variance  |MP t N t is given by: 

 

       

         

T

T T

2

| , 1 1 | , 1

, 1 1 1 ,

M M

N

j

P t N t t N t P t t t N t

t N t j t j Q t j t j t N t j

 

   


      

          
            (22) 

 
Substituting the actual measurement  iy t into the conservative weighted measurement 

fusion Kalamn predictors (16) and (21), we obtain the actual one-step and N -step time-varying 
Kalman predictors. 

The actual prediction errors are given as: 
  

             ˆ1 | 1 1 | 1 |M M Mx t t x t x t t t x t t t w t                                           (23) 

 

               ˆ| | | 1M M n M M M Mx t t x t x t t I K t H t x t t K t v t                              (24) 

 
Substituting (24) into (23) yields: 
 

             1| | 1M M M M Mx t t t x t t t w t K t v t                                               (25) 

 
The actual weighted measurement fused one-step prediction error variance satisfies the 

Lyapunov equation. 
 

                   T T T1 | | 1M M M M M M MP t t t P t t t t Q t t K t R t K t                    (26) 

 
With the initial value    1| 0 0 | 0MP P , and from (4), we have: 

 

   1| 0 1| 0M MP P                                                                                                 (27) 

 
Where  MR t is the actual variance of  Mv t , and from (14) and (15) we have: 

 
  T 1 1 T 1 1 T 1 1( ( ) ) ( ) ( ) ( ) ( ( ) )M c c c c cR t e R t e e R t R t R t e e R t e                                                       (28) 

 
   M MR t R t                                                                                                        (29) 

 
Iterating (1), we have the non-recursive formula: 
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2

, 1 1 , 1 1
t N

i t

x t N t N t x t t N i i w i  


 

         , 2N                         (30) 

 
The actual prediction errors are given as: 
 

     

         
2

ˆ| |

, 1 1| , 1 1

M M

t N

M
i t

x t N t x t N x t N t

t N t x t t t N i i w i  


 

    

       




, 2N                (31) 

 
So we have the actual N step weighted measurement fused prediction error variances. 
 

       

         

T

T T

2

| , 1 1 | , 1

, 1 1 1 ,

M M

N

j

P t N t t N t P t t t N t

t N t j t j Q t j t j t N t j

 

   


      

          
            (32) 

 
Theorem 1. For multisensor uncertain system (1) and (12) with Assumptions 1-3, the 

actual weighted measurement fusion time-varying Kalman predictors are robust in the sense 
that for all admissible actual variances    ,

ivQ t R t and  1| 0MP satisfying (3) and (4), for 

arbitrary time t , we have: 
 

   | |M MP t N t P t N t   ,  1N                                                                              (33) 

 
And  |MP t N t is the minimal upper bound of  |MP t N t for all admissible uncertainties of 

noise variances. We call the actual fused Kalman predictors as the robust weighted 
measurement fusion Kalman predictors. 

Proof. When 1N  , defining      1| 1| 1|M M MP t t P t t P t t      , subtracting (26) from 

(19) yields the Lyapunov equation. 
 

         T1| | 1M M M M MP t t t P t t t t                                                               (34) 

 

                   T T
M M M M Mt t Q t Q t t K t R t R t K t                                     (35) 

 
Applying (3), (29) and (35) yields that   0M t  , and from (4) we have: 

 

         1| 0 1| 0 1| 0 0 | 0 0 | 0 0M M MP P P P P                                            (36) 

 
Hence from (34), we have  2 |1 0MP  . Applying the mathematical induction method yields

 1| 0MP t t   , for all time t , i.e. the inequality (33) holds for 1N  . When 2N  , Defining

     | | |M M MP t N t P t N t P t N t      , subtracting (32) from (22) yields: 

 

          

            

T

T T

2

| , 1 1 | 1 | , 1

, 1 1 1 1 ,

M M M

N

j

P t N t t N t P t t P t t t N t

t N t j t j Q t j Q t j t j t N t j

  

   


        

             
   (37) 

 
Applying the robustness of the one-step predictor (33) and (3), we get  | 0MP t N t   , 

therefore (33) holds for 2N  . Taking        ,
i iv vQ t Q t R t R t  and    1| 0 1| 0M MP P , then 

comparing (19) with (26) and (22) with (37), we have    | |M MP t N t P t N t   , 1N  . For 



TELKOMNIKA  ISSN: 2302-4046  

Robust Weighted Measurement Fusion Kalman Predictors with Uncertain… (Wen-juan Qi) 

4697

arbitrary other upper bound  * |MP t N t , we have      *| | |M M MP t N t P t N t P t N t      which 

yields that  |MP t N t is the minimal upper bound of  |MP t N t . The proof is completed. 

Corollary 1. For uncertain multisensor system (1) and (2) with Assumptions 1-3 and 
conservative upper bounds  Q t and  

ivR t , similar to the robust weighted measurement fusion 

time-varying Kalman predictors, the robust local time-varying Kalman one-step and multi-step 
predictors are given by: 

 
         ˆ ˆ1 | | 1i i i i ix t t t x t t K t y t    , 1, ,i L                                               (38) 

 
       =i it t K t H t    ,          T 1= | 1i i iK t t P t t H t Q t                                (39) 

 
         T| 1i i iQ t H t P t t H t R t                                                                       (40) 

 
With the initial value      ˆ 1 | 0 , 1 | 0 0 | 0i ix P P  , and we have the Riccati equation. 

 

                  
           

1T T

T T

1| | 1 | 1 | 1

| 1

i i i M M

i

P t t t P t t P t t H t H t P t t H t R t

H t P t t t t Q t t



  

      
  

      (41) 

 
The conservative and the actual one-step prediction error variances satisfy the 

Lyapunov equations. 
 
                   T T T1 | | 1i i i i i i iP t t t P t t t t Q t t K t R t K t                            (42) 

 
                   T T T1 | | 1i i i i i i iP t t t P t t t t Q t t K t R t K t                          (43) 

 
With the initial values    1| 0 0 | 0iP P ,    1| 0 0 | 0iP P . 

The conservative local optimal time-varying Kalman multi-step predictors are given by: 
  
     ˆ ˆ| , 1 1 |i ix t N t t N t x t t     , 1, ,i L  , 2N                                               (44) 

 
The conservative optimal N step prediction error variances  |iP t N t are given by: 

 

       

         

T

T T

2

| , 1 1| , 1

, 1 1 1 ,

i i

N

s

P t N t t N t P t t t N t

t N t s t s Q t s t s t N t s

 

   


      

          
              (45) 

 
The actual N step prediction error variances are give by: 
 

       

         

T

T T

2

| , 1 1| , 1

, 1 1 1 ,

i i

N

s

P t N t t N t P t t t N t

t N t s t s Q t s t s t N t s

 

   


      

          
              (46) 

 
Similarly, the local time-varying Kalman one-step and multi-step predictors are also 

robust, i.e., 
 
   1| 1 |i iP t t P t t   , 1, ,i L                                                                                (47) 

   | |i iP t N t P t N t   , 2N  , 1, ,i L                                                                  (48) 
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And  |iP t N t is the minimal upper bound of  |iP t N t , 1N  . 

 
 

4. Robust Local and Fused Steady-state Kalman Predictors 
Theorem 2. For multisensor uncertain time-invariant system (1) and (12) with 

Assumptions 1-3, where  t  ,  t  ,  H t H ,      , ,
i i

Q t Q R t R R t R      , and 

 Q t Q ,  R t R  ,  
i i

R t R  are all constant matrices. Assume that the measurements  iy t

, 1, ,i L  are bounded, then the actual weighted measurement fusion steady-state Kalman 
predictors are given by: 

 
     ˆ ˆ1 | | 1s s

M M M M Mx t t x t t K y t    , 1N                                                          (49) 

 
   1ˆ ˆ| 1 |s N s

M Mx t N t x t t    , 2N                                                                       (50) 

 

 =M n MI K H  , 
1T T=M M M MK H H H R 


                                                  (51) 

 
T T T

M M M M M M MQ K R K                                                                              (52) 

 
T T T

M M M M M M MQ K R K                                                                             (53) 

 
Where the superscript s denotes “steady-state”, the initial value  ˆ 0 | 0s

Mx can arbitrarily 

be selected,  iy t are the actual measurements, and: 

 
  T 1 1 T 1( ) ( )M c c cy t e R e e R y t                                                                                         (54) 

 
T 1 1( )M cR e R e  ,  T 1 1 T 1 1 T 1 1( ) ( )M c c c c cR e R e e R R R e e R e                                                    (55) 

 
The conservative and actual steady-state prediction error variances satisfy the 

Lyapunov equations. 
 

     
2T T1 1 T

0

N
N N s s

M M
s

P N Q      


 



    , 2N                                              (56) 

 

     
2T T1 1 T

0

N
N N s s

M M
s

P N Q      


 



    , 2N                                                (57) 

 
The actual steady-state Kalman predictors are robust, in the sense that: 
  

M M   ,    M MP N P N                                                                                       (58) 

 
And M and  MP N are the minimal upper bounds of M and  MP N , respectively. 

Proof. As t  , taking the limit operations for (14)-(33) with , , ,H Q  and iR are 

constant matrices yields (49)-(58). Taking Q Q and
i iv vR R , from (55), we have M MR R , so 

that from (52) and (53) yields M M  , hence from (56) and (57), we have    M MP N P N . If 
*
M or  *

MP N is the arbitrary other bound of M or  MP N , we have *
M M M     or 

     *
M M MP N P N P N  , which yields that M and  MP N are minimal. The proof is completed. 

Similarly, the actual local steady-state Kalman predictors are given by: 
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     ˆ ˆ1| | 1s s
i i i i ix t t x t t K y t    , 1, ,i L                                                           (59) 

 

 =i n iI K H  ,   1T T=
ii i i vK H H H R 


                                                         (60) 

 
The conservative and actual prediction error variances satisfy Lyapunov equation. 
  

T T T
i i i i i i iQ K R K       , 1, ,i L                                                                  (61) 

 
T T T

i i i i i i iQ K R K       , 1, ,i L                                                                 (62) 

 
The actual steady-state fused Kalman multi-step predictor is given as: 
 
    1ˆ ˆ| 1 |s N s

i ix t N t x t t    , 1, ,i L  , 1N                                                           (63) 

 
The conservative and actual local steady-state N step prediction error variances are 

given as:  
 

     
2T T1 1 T

0

N
N N s s

i i
s

P N Q      


 



   , 2N  , 1, ,i L                                  (64) 

 

     
2T T1 1 T

0

N
N N s s

i i
s

P N Q      


 



   , 2N  1, ,i L                                    (65) 

 
The actual local steady-state Kalman predictors (59) and (63) are robust in the sense 

that for all admissible uncertainties of Q and
ivR satisfying ,

i iv vQ Q R R  , we have: 

 

i i  ,     i iP N P N , 1, ,i L                                                                            (66) 

 
And i and  iP N are the minimal upper bounds of i and  iP N , respectively. Hence they are 

called the robust steady-state Kalman predictors. 
Lemma 1. [16, 17] Consider a dynamic error system. 
 

       1t F t t u t                                                                                              (67) 

 
Where 0t  ,   nt R  ,   nu t R , and  F t is uniformly asymptotically stable,  i.e., there 

exist constants 0 1  and 0c  such that: 

 

 , , 0t iF t i c t i                                                                                                (68) 

 
Where the notation denotes the norm of matrix,        , 2 1 ,F t i F t F t F i  

 , nF i i I . If  u t is bounded, then  t is bounded. If   0u t  , then   0t  , as t  . 

Theorem 3. Under the conditions of Theorem 2, the robust time-varying and steady-
state Kalman local and fused one-step and multi-step predictors have each other the 
convergence in a realization, such that: 

 

   ˆ ˆ1 | 1 | 0s
i ix t t x t t      , as t  , i.a.r                                                             (69) 

 

   ˆ ˆ| | 0s
i ix t N t x t N t      , as t  , i.a.r , 2N                                               (70) 
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   ˆ ˆ1 | 1 | 0s
M Mx t t x t t      , as t  , i.a.r                                                        (71) 

 

   ˆ ˆ| | 0s
M Mx t N t x t N t      , as t  , i.a.r , 2N                                            (72) 

 
Where the notation “i.a.r” denotes the convergence in a realization [17], and we have 

the convergence of variances. 
 

 1|i iP t t   ,  1|M MP t t   , as t  , 1, ,i L                                             (73) 

 

   |i iP t N t P N  ,    |M MP t N t P N  , as t  , 1, ,i L                             (74) 

 
Proof.  According to Assumption 3, we have [18]: 
 
 1|i iP t t   , as t  , 1, ,i L                                                                          (75) 

 
Then from (19) and (39), we have: 
 

 i it  ,  i iK t K ,  1|M MP t t    as t  , 1, ,i L                                  (76) 

 
Similarly, we can prove (74) holds, Setting    i i it t    ,    i i iK t K K t  in 

(38), applying (76) yields   0i t    0iK t  , as t  . Subtracting (59) from (38), and 

defining      ˆ ˆ| |s
i i it x t N t x t N t     , we have: 

 

     1i i i it t u t                                                                                               (77) 

 
With          ˆ | 1i i i i iu t t x t t K t y t    . Noting that  i t is uniformly asymptotically 

stable [19], and    i iK t y t is bounded, applying Lemma 1 to (38) yields the boundedness of 

 ˆ 1|ix t t . Hence we have   0iu t  . Applying Lemma 1 to (77), noting that i is a stable 

matrix, so it is also uniformly asymptotically stable, hence   0i t  , i.e. the convergence (69) 

holds. The convergence of (70)-(72) can be proved similarly. The proof is completed. 
 
 

5. The Accuracy Analysis 
Definition 1. The trace  tr |P t N t of the upper bound  |P t N t of the actual 

prediction error variances  |P t N t for all admissible uncertainties is called the robust accuracy 

or global accuracy of a robust Kalman predictor, and  tr |P t N t is called as its actual 

accuracy. The smaller  tr |P t N t or  tr |P t N t means the higher robust accuracy or actual 

accuracy. The robust accuracy gives the lowest bound of all possible actual accuracies yielded 
from the uncertainties of noise variances. 

Theorem 4. For multisensor uncertain system (1) and (2) with Assumptions 1-3, the 
accuracy comparison of the local and fused robust Kalman predictors is given by: 

 

   | | ,i iP t N t P t N t   1, ,i L   , 1N                                                              (78) 

 

     | | | ,M M iP t N t P t N t P t N t     1, ,i L  , 1N                                         (79) 

 

   tr | tr |i iP t N t P t N t   , 1, ,i L   , 1N                                                          (80) 
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     tr | tr | tr |M M iP t N t P t N t P t N t     , 1, ,i L  , 1N                                (81) 

 
         ,i i M M iP N P N P N P N P N   , 1, ,i L  , 1N                                       (82) 

 
With the definitions        1 , 1 , 1 , 1i i i i M M M MP P P P       . 

 
   tr tri iP N P N ,      tr tr trM M iP N P N P N  , 1, , ,i L  1N                            (83) 

 
Proof. According to the robustness (33), (47) and (48), we have (78) and the first 

inequality of (79). Since the conservative weighted measurement fuser is equivalent to the 
conservative centralized fuser [20], the second inequality of (79) has been proven in [21]. 
Taking the trace operations for (78) and (79) yields the inequalities (80) and (81). As t  , 
taking the limit operations for (78)-(81) yields (82) and (83). The proof is completed. 

 
 

6. Similation Example 
Consider a three-sensor time-invariant tracking system with uncertain noise variances. 
 

     1x t x t w t    ,         , 1, 2,3i iy t Hx t t t i                                      (84) 

 
2

0 0

0

1 0.5
,

0 1

T

T


 

  
    
   

, 2H I                                                                           (85) 

 

Where 0 0.35T  is the sampled period,       T

1 2,x t x t x t    is the state,  1x t and  2x t

are the position and velocity of target at time 0tT .  w t ,  t and  i t are independent Gaussion 

white noises with zero mean and unknown uncertain actual variances Q , R and 
i

R respectively.  

In the simulation, we take 1Q  , 0.8Q  , diag(1.5,2.5)R  , diag(1, 2)R  ,
1

diag(3.6,2.5)R  , 

1
diag(3,1.8)R  ,

2
diag(8,0.36)R  ,

2
diag(6,0.25)R  ,

3
diag(0.5, 2.8)R  ,

3
diag(0.38, 2)R  , 1,N   

2N  . The initial values    T0 0 0x  , 0  ,     20 | 0 diag(1.1,1.2), 0 | 0P P I  . 

The comparisons of the prediction error variance matrices and their traces of the robust 
steady-state local and weighted measurement fusion Kalman predictors are shown in Table 1-
Table 3. These matrices and their traces verify the accuracy relations (82) and (83). 

The traces of the conservative and actual robust one-step and two-step prediction error 
variances are compared in Figure 1 and Figure 2. We see that the traces of the local and fused 
robust time-varying Kalman one-step and two-step predictors quickly converge to these of the 
corresponding steady-state Kalman predictors, which show the robust accuracy relations (80), 
(81) and (83) hold. 

 
 

Table 1. The Conservative and Actual Accuracy Comparison of One-step Prediction Error 
Variances Matrices i and i , 1, 2,3,i M  

1  2  3  M  

1.4931 0.6538

0.6538 0.6314

 
 
 

 
1.7995 0.6200

0.6200 0.5833

 
 
 

 
0.8558 0.4877

0.4877 0.5592

 
 
 

 
0.7315 0.4098

0.4098 0.4995

 
 
 

 

1
  

2
  

3
  

M
  

1.1667 0.5123

0.5123 0.4989

 
 
 

 
1.3698 0.4836

0.4836 0.4617

 
 
 

0.6202 0.3672

0.3672 0.4346

 
 
 

0.5365 0.3134

0.3134 0.3922
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Table 2. The Conservative and Actual Accuracy Comparison of Two-step Prediction Error 
Variances Matrices iP and iP , 1, 2,3,i M  

1(2)P  2 (2)P  3 (2)P  (2)MP  

2.0319 0.8963

0.8963 0.7539

 
 
 

 
2.3087 0.8455

0.8455 0.7058

 
 
 

 
1.2694 0.7049

0.7049 0.6817

 
 
 

 
1.0833 0.6060

0.6060 0.6220

 
 
 

 

1(2)P  2 (2)P  3 (2)P  (2)MP  

1.5894 0.7040

0.7040 0.5969

 
 
 

 
1.7679 0.6624

0.6624 0.5597

 
 
 

0.9335 0.5365

0.5365 0.5326

 
 
 

0.8069 0.4678

0.4678 0.4902

 
 
 

 

 
 

Table 3. The Robust and Actual Accuracy Comparison of tr i , tr i , and tr iP , tr iP  1, 2,3,i M  

1tr ,
1

tr  2tr , 2tr  3tr , 3tr  tr M , tr M  

2.1245,1.6656 2.3828,1.8315 1.415,1.0548 1.231,0.9287 

1
tr (2)P , 1tr (2)P  2

tr (2)P , 2tr (2)P  3
tr (2)P , 3tr (2)P  tr (2)

M
P , tr (2)MP  

2.7858,2.1863 3.0144,2.3276 1.9511,1.4661 1.7053,1.2971 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The Traces of the Conservative and Actual Local and Fused Kalman One-step 
Predictors 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Figure 2. The Traces of the Conservative and Actual Local and Fused Kalman Two-step 
Predictors 
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In order to verify the above theoretical accuracy relations, taking 200  Monte Carlo 

simulation runs, According to the ergodicity [22], we have: 
 

 MSE trt P  , as ,t     ,  1,2,3, M                                                   (86) 

 
The MSE curves of the local and fused time-varying robust Kalman predictors are 

shown in Figure 3, which verify the accuracy relations (80), (81) and (83), and verify the 
ergodicity (86). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 3. The Comparison of  MSE t and trP , 1,2,3,M   

 
 
7. Conclusion 

For multisensor system with uncertain noise variances, using the minimax robust 
estimation principle, the lcoal and weighted measurement fusion robust Kalman time-varying 
predictors are presented. Based on the Lyapunov equation approach, their robustness are 
proved, and their robust accuracy relations are also proved. It is proved that the robust 
accruacies of the weighted measurement fusion Kalman predictors are higher than that of each 
local robust Kalman predictor. The convergence problem of the robust local and weighted 
measurement fusion time-varying and steady-state Kalman predictors is proved by the dynamic 
error system analysis (DESA) method. This extension of this paper to systems with uncertain 
noise variances and model parameters is under study. 
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