
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.6, June 2014, pp. 4802 ~ 4807
DOI: 10.11591/telkomnika.v12i6.5525 4802

Received December 30, 2013; Revised March 12, 2014; Accepted March 28, 2014

Deployment of TinyOS for Online Water Sensing

Xin Wang*, Pan Xu
Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education),

Jiangnan University, Wuxi 214122, PR China
*Corresponding author, e-mail: wangxin@jiangnan.edu.cn

Abstract
Current quality assessment methods of water parameters are mainly laboratory based, require

fresh supplies of chemicals, trained staff and are time consuming. Sensor networks are great alternatives
for such requirements. We present a practical application of wireless networks: a remote water monitoring
system running TinyOS. The contents of several chemicals in the water are sensed and transmitted. The
sensor data are collected and transmitted via ZigBee and GPRS. Instead of focusing on theoretic issues
such as routing algorithms, network lifetime and so on, we investigate special techniques involved in the
implementation of the system while employing TinyOS and its special programming language.

Keywords: TinyOS, hierarchical network, embedded operating system, water sensing

1. Introduction

TinyOS is an open source, BSD-licensed operating system designed for low-power
wireless devices, such as those used in sensor networks, ubiquitous computing, personal area
networks, smart buildings, and smart meters. To confront the water pollution, various water
monitoring systems based on cellular mobile network have been developed [1, 2]. These
systems may assist environmental protection agencies in providing continuous water monitoring
with minimum interaction of man interference. But, with such systems, the rare channel
resources and hardware are greatly wasted when the monitoring nodes are distributed in higher
density. The hierarchical organization [3], grouping of the monitoring nodes before transferring
the sensor data to higher levels, is one of the mechanisms proposed to deal with that
extravagance and is commonly referred to as clustering [4]. This paper is to show a hierarchical
architecture, which is low in cost, easy to construct, less dependent upon network infrastructure,
is implemented by employing ZigBee and GPRS devices, and especially with TinyOS as the
sensor networks’ operating system.

2. Research Method Structure and Composition of the System
TinyOS is designed to run on small, wireless sensors. Networks of these sensors have

the potential to revolutionize a wide range of disciplines, fields, and technologies. Recent
example uses of these devices include Golden Gate Bridge safety, volcanic monitoring and data
center provisioning.

The hierarchical network is made up of one Base Station and some monitoring nodes,
as is shown in Figure 1. These monitoring nodes are responsible for sampling the water, single-
hopping the data to the base station by ZigBee channel, while the Base Station is set for
coordination between the nodes, sending the sensor data which is collected from the nodes to
the remote management platform.

The Base Station is composed of online monitoring device, GPRS (General packet
radio service) DTU and ZigBee Module (worked as a coordinator, FFD), as is shown in Figure 2.
The online monitoring device which uses CP1H PLC made by OMRON as the controller is
responsible for testing the concentration of NO3-, PO43- and PH value. GPRS DTU implements
the transmission of the remote signals by GPRS network.

GPRS is a packet oriented mobile data service on the 2G and 3G cellular
communication system's global system for mobile communications (GSM) while ZigBee is new
specification for a suite of high level communication protocols used to create personal area
networks built from small, low-power digital radios.

TELKOMNIKA ISSN: 2302-4046

Deployment of TinyOS for Online Water Sensing (Xin Wang)

4803

Management
Platform

Data
Center

Monitor
Center

SQL Query

InternetGPRS

Figure 1. Topology of the Network and Remote Management Platform. The Disc Stands for

Base Station, Circle for Monitoring Nodes

ZigBee module is made up of MSP430 controller and CC2420 RF chip. It is used to

read the data of the water in PLC, collects the data of water in the other monitoring nodes and
exchanges the data with the remote management platform. Different from the Base Station, the
monitoring node, on the other hand, does not include GPRS DTU, and its ZigBee module is a
Reduced Function Device (RFD).

GPRS DTUZigBee Module
Online

Measuring

I/O

A/D

Serial
CablePLC

Serial
Cable

TinyOS
MCU

DTU

Relays

Sensors

Figure 2. Components of the Hardware of the Base Station

3. Zigbee Module

Both FFD and RFD are built with TinyOS operating system. TinyOS is an embedded
system for wireless network, with a set of components that are included as-needed in
applications [5].

DTUActiveMessageCDTUActiveMessageC

WaterMonitorC

MainC TimerMilliC PLCActiveMessageC CC2420ActiveMessageC

PLCAMSend->AMSend
PLCReceive->Receive

CC2420AMSend->AMSend
CC2420Receive->Receive

Figure 3. Components used for FFD and RFD. A solid box is for a singleton component, a

dashed box for a generic component, while double-line box is only used in FFD. An arrow is an
interface

At a high level, TinyOS provides three things to make writing systems and applications
easier: (1) A component model, which defines how you write small, reusable pieces of code and
compose them into larger abstractions; (2) A concurrent execution model, which defines how
components interleave their computations as well as how interrupt and non-interrupt code
interact; (3) Application programming interfaces (APIs), services, component libraries and an
overall component structure that simplify writing new applications and services.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4802 – 4807

4804

As is illustrated in Figure. 3, WaterMonitorC is composed of five components of which,
MainC implements the boot sequence of a node and provides the Boot interface so that
WaterMonitorC can be notified when a node has fully booted. In our application, WaterMonitorC
needs to sample periodically, so we can use startPeriodic(60000) command, which will signal a
fired event once a minute. It's worth mentioning that there are three ActiveMessageC
components which look similar but have entirely different responsibilities. For instance,
PLCActiveMessageC is used for learning the states of auxiliary relays in PLC and the
concentration of NO3-, PO43- and PH value. Communication between FFD and RFDs is the
duty of CC2420ActiveMessageC. DTUActiveMessageC, used only in FFD, sends data packets
to remote management platform by GRPS channel.

3.1. RFD

RFD has two main functions: 1. Read the concentration of NO3-, PO43- and PH value
(as Sensor Data) in PLC; 2. Send Sensor Data to the FFD. The Sensor Data is read through
HOSTLINK instruction. HOSTLINK is Omron's proprietary protocol, by which the external device
can communicate with Omron PLC through serial port. By HOSTLINK protocol, RFD can visit
DM (Data Memory) and other registers in PLC [6]. In our system, the Sensor Data, starting from
0012 unit, is stored in the DM area of PLC, each being represented by an 8-byte ASCII. In order
to read the Sensor Data, TinyOS sends the HOSTLINK instruction "@00RD0012000653*↙",
and then PLC sends back a HOSTLINK instruction as response which contains Sensor Data. It
is to be noted that PLC stores the Sensor Data as a double-byte ASCII, of the 8 bytes only the
late half are valid.

Figure 4(a) is a subset of the RFD state diagram, the advanced operations being elided
for simplicity. WaterMonitorC initiates periodic sampling in its booted event by
Timer.startPeriodic command. Timer.fired requests a new PLC sampling by sending HOSTLINK
instructions using the PLCAMSend interface, and a PLCAM packet stored in a
plc_sensor_data_t packet buffer. The plc_sensor_data_t holds the current Sensor Data after
HOSTLINK response arrives. Then we restore the Sensor Data into node_sensor_packet_t
(Figure. 5), and send it to FFD by CC2420AMSend interface. Thus, the packet is smaller and
easier to transmit; besides, it identifies which monitoring node it was born of.

Boot.booted
PLCAMSend.send

CC2420AMSend.send

Timer.fired

PLCReceive.receive

CC2420AMSSend.sendDone

(a)

Timer.firedBoot.booted
PLCAMSend.send

DTUAMSend.send

PLCReceive.receive

DTUAMSend.sendDone

CC2420Receive.receive

(b)

Figure 4. (a) RFD operating scenario; (b) FFD operating scenario.

3.2. FFD
FFD has functions as follows: 1. Receive node_sensor_packet_t variable sent from a

RFD; 2. Read the Sensor Data in PLC; 3. Send every node_sensor_packet_t variable to the
remote management platform. The remote transmission function is implemented by GRPS DTU.
GPRS DTU is a device for conversion between serial data and IP packet. It has the PPP dial-up
and TCP/IP protocol encapsulated in GPRS DTU, enabling transparent transmission between
serial devices and remote computers [7].

Different from RFD, PLCReceive.receive does not retransmit HOSTLINK response, but
sends the restored node_sensor_packet_t variable to the remote management platform by
DTUAMSend interface. CC2420Receive forwards the node_sensor_packet_t variable by
DTUAMSend interface after receiving it from RFD. When this is done, the TinyOS system

TELKOMNIKA ISSN: 2302-4046

Deployment of TinyOS for Online Water Sensing (Xin Wang)

4805

returns to the original state waiting for next Timer.fired event. The FFD operating scenario is
shown in Figure 4(b).

00 RD 00 null nitrate null nullphosphate ph fcs *�@

TOS_NODE_ID nitrate phosphate ph

plc_sensor_data_t

node_sensor_packet_t

Figure 5. Relationship between plc_sensor_data_t and node_sensor_packet_t

4. Remote Management Platform

The architecture of remote management platform is shown in Figure 6.

Virtual
Serial Port

Service

IP Datagram

LabVIEW
Data Process

Serial
Data

MySQL
Database

Sensor
Data

Sensor Data
and Command

LabVIEW Monitor Center

History Data

Figure 6. Architecture of Remote Management Platform

4.1. Virtual Serial Port Service

The remote management computer receives the IP packet which contains Sensor Data.
For easy operation, the IP packet is converted into serial data by Virtual Serial Port Service.
Then the serial data is used to communicate with upper procedures through the virtualized
serial port.

4.2. Data Process Procedure

 The Data Process Procedure, implemented by LabVIEW software, is responsible for
binding the virtual serial port and receives Sensor Data from GPRS DTU. As float in CP1H PLC
is stored as two 16-bit words in ascending order, LabVIEW must convert it before being
transformed into float. The obtained sensor data is stored into the database and displayed in the
monitoring center. This process is implemented by a producer-consumer pattern. In this way,
the Sensor Data can be stored into MySQL database immediately in producer cycle, and is
displayed in a constant speed in consumer cycle.

4.3. Data Process Procedure

MySQL, an open sourced relational database with high performance, can run in most
operating systems. LabVIEW connects MySQL via Database Connectivity Toolkit and ODBC
interface. The Monitoring Center is not only responsible for displaying the Sensor Data of
monitoring nodes in real time but also achieves the functions of historical inquiry and abnormal
alarm.

5. Other operating systems for WSN

Besides the TinyOS, there are some other embedded operating systems designed for
the sensor networks.

Contiki is an open source operating system for networked, memory-constrained
systems with a particular focus on low-power wireless Internet of Things devices. Examples of
where Contiki is used include street lighting systems, sound monitoring for smart cities, radiation
monitoring systems, and alarm systems. Contiki was created by Adam Dunkels in 2002 and has

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 6, June 2014: 4802 – 4807

4806

been further developed by a world-wide team of developers from Atmel, Cisco, Enea, ETH
Zurich, Redwire, RWTH Aachen University, Oxford University, SAP, Sensinode, SICS, ST
Microelectronics, Zolertia, and many others. The name Contiki comes from Thor Heyerdahl's
famous Kon-Tiki raft.

ERIKA Enterprise is an open-source and royalty-free OSEK/VDX Kernel. This RTOS
includes also RT-Druid, which is a development environment distributed as a set of Eclipse
plugins. ERIKA Enterprise implements various conformance classes, including the standard
OSEK/VDXconformance classes BCC1, BCC2, ECC1, ECC2, CCCA, CCCB. Moreover, ERIKA
provides other custom conformance classes named FP (Fixed priority), EDF (Earliest deadline
first scheduling), and FRSH (an implementation of resource reservation protocols).

Nano-RK is a real-time operating system from Carnegie Mellon University designed to
run on micro-controllers for use in sensor networks. Nano-RK supports a fixed-priority fully
preemptive scheduler with fine-grained timing primitives to support real-time task sets. "Nano"
implies that the RTOS is small, consuming 2KB of RAM and using 18KB of flash, while "RK" is
short for resource kernel. A resource kernel provides reservations on how often system
resources can be consumed. For example, a task might only be allowed to execute 10ms every
150ms (CPU reservation), or a node might only be allowed to transmit 10 network packets per
minute (network reservation). These reservations form a virtual energy budget to ensure a node
meets its designed battery lifetime as well as protecting a failed node from generating excessive
network traffic. Nano-RK is open source, is written in C and runs on the Atmel-based FireFly
sensor networking platform, the MicaZ motes as well as the MSP430 processor.

LiteOS is a real-time operating system from University of Illinois for use in sensor
networks. LiteOS is a UNIX-like operating system that fits on memory-constrained sensor
nodes. This operating system allows users to operate wireless sensor networks like operating
Unix, which is easier for people with adequate Unix background. LiteOS provides a familiar
programming environment based on UNIX, threads, and C. It follows a hybrid programming
model that allows both event-driven and thread-driven programming. LiteOS is open source,
written in C and runs on the Atmel based MicaZ and IRIS sensor networking platform.

OpenTag is a DASH7 protocol stack and minimal Real-Time Operating System, written
in the C programming language. It is designed to run on microcontrollers or radio Systems on a
Chip (SoC). OpenTag was engineered to be a very compact software package. However, with
proper configuration, it can also run in any POSIX environment. OpenTag can also provide all
functionality required for any type of DASH7 Mode 2 device, rather than just the eponymous
“tag”-type endpoint device

6. Conclusion

As a real time operating system optimized for WSN, TinyOS is first employed in the field
of water quality monitoring in our system to achieve the goals of water quality data collection
and its remote transmission. The system suggests the component-based programming method
and the event-driven operating mechanism, which is independent of network infrastructure,
flexible and affordable to be implemented and has a promising prospect. However, the system
is far from being perfect. More research is needed concerning hidden terminal, out-of-order
packet and other issues in the future. Besides, the balance between system lifetime and
transmission rate is underd consideration.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.
61273070), the Programme of Introducing Talents of Discipline to Universities (B12018), PAPD
of Jiangsu Higher Education Institutions and the Fundamental Research Funds for the Central
Universities (JUSRP11132).

References
[1] Zhao X. Research on environment system for water monitor. International Conference on Intelligent

System Design and Engineering Application. Changsha. 2010; 2: 197-199.

TELKOMNIKA ISSN: 2302-4046

Deployment of TinyOS for Online Water Sensing (Xin Wang)

4807

[2] Alex A, Jenny DR. Designing an automated water quality monitoring system for West and Rhode
Rivers. Proceedings of the 2009 IEEE Systems and Information Engineering Design Symposium.
Charlottesville. 2009; 131-136.

[3] Joa-Ng Mario, Lu I-Tai. A peer-to-peer zone-based two-level link state routing for mobile ad hoc
networks. IEEE Journal on Selected Areas in Communications. 1999; 17(9): 1415-1425.

[4] Azzedine B. Algorithms and protocols for wireless sensor networks. Hoboken: John Wiley & Sons.
2009.

[5] Gay D, Levis P, Culler D. Software design patterns for TinyOS. ACM Transactions on Embedded
Computing Systems. 2005; 40(7): 40-49.

[6] Omron Corporation. Communications commands reference manual. Kyoto. 2010.
[7] Metz C. A pointed look at the point-to-point protocol. IEEE Internet Computing. 1999; 3(4): 85-88.

