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Abstract 
Rough set model based on tolerance relation, has been widely used to deal with incomplete 

information systems. However, this model is not so perfect because not all of the elements in a tolerant 
class are mutually tolerant, but they are all tolerant with the generating element of this class. To mend this 
limitation, the compatible relation is redefined, and then the concept of maximal complete compatible class 
in incomplete information system is presented for the purpose that any two elements in the same 
compatible module are mutually compatible. Furthermore, two methods are put forward in the interest of 
selecting optimal compatible class for an object, which can be used in knowledge reduction. Besides, 
coverings on universe produced by tolerance and compatible relations are deeply investigated and 
compared. Finally, a medical decision table is analyzed, some compact rules are mined. 
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1. Introduction 

Rough set theory has developed since Pawlak's paper [1-2] as a new mathematical tool 
for analyzing vague and imprecise descriptions of objects. It uses indiscernibility (equivalence) 
relation to represent classification. In recent years, rough set theory has been successfully 
applied to so many fields such as Artificial Intelligence, Data Mining, Machine Learning, Pattern 
Recognition, Knowledge Acquisition and so on [2-11]. Rough set proposed by Pawlak is based 
on the assumption of complete information systems, i.e. there are no unknown values in the 
information table. However, in practical applications, incomplete information systems can be 
seen everywhere for a lot of unpredictable reasons. Therefore, mining rules from incomplete 
information systems is one of the important directions for the development of rough set. 

In general incomplete information systems, unknown values may have two different 
explanations: in the first case, all unknown values are “do not care” condition; in the second 
case, all unknown values are lost. In Reference [10], Grzymala-Busse firstly studied the 
unknown value ( “do not care”) from the viewpoint of rough set theory, consequently, 
Kryszkiewicz [12] transformed the indiscernibility relation to tolerance relation (reflective, 
symmetric). On the other hand, incomplete information systems in which all unknown values are 
lost, from the viewpoint of rough set theory, were studied for the first time in Reference [12], 
where two algorithms for rule induction were presented. Based on Grzymala-Busse's work, 
Stefanowski [13] advanced the non-symmetric similarity relation (reflective, transitive). 

In this paper, all unknown values are looked as “do not care”, that is to say, each 
unknown value could be replaced by all values from the domain of the attribute, therefore, what 
we have done are all based on the further investigation of tolerance relation. In the classification 
produced by tolerance relation, not all of the elements in the same tolerant class are mutual 
tolerant, but they are all tolerant with the generating element of this tolerant class. 

Owing to such limitation of tolerance relation, a binary relation called compatible relation 
is re-defined. According to compatible relation, a complete covering on universe can be got. 
That is to say, any two elements in the same compatible class are mutually compatible. It is 
clear that this kind of classification of universe in incomplete information systems meets with the 
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practical applications more than that is based on tolerance relation. Furthermore, since any one 
object in the universe is likely to be included into two or more different compatible classes, two 
different methods are presented for choosing optimal compatible class. 
 
 
2. Basic Concepts 

An incomplete information system is a quadruple S=<U, AT, V, f>, where U is a 
nonempty finite set of objects called universe and AT is a nonempty finite set of attributes, such 
that aATaa VVUATa  :  where Va is called the value set of a; any attribute domain Va 

may contain special symbol “” to indicate that the value of an attribute is unknown; V is 
regarded as the value set of all attributes and then aATa VV   ; let us define f as an 

information function such that f(x,a) Va for any  aAT and  xU. 
Definition 1. Let S=<U, AT, V, f> be an incomplete information system, ATA , a 

binary relation SIM(A) can be defined as [12]: 
  

*}),(*),(),(),(,:),{()(  ayfaxfayfaxfAayxASIM                               (1) 
 
The SIM(A)  is a tolerance relation since it is reflexive and symmetric. Furthermore, let 

us denote by SA(x) the set of objects for which SIM(A)  holds, In other words, SA(x) is the 
maximal set of objects which are possibly indiscernible by A with x and any one element in 
SA(x) has a tolerance relation with x, it is called the tolerant class of x. It is clear that SA(x) is 
actually a kind of neighborhood of x. 

Let U/SIM(A) denotes classification for AAT, which is the family set { SA(x): xU }. 
What should be noticed is that all tolerant classes in U/SIM(A) do not constitute a partition in 
general, but a covering on universe U, namely, UxSAUx  )( and )(xSA (xU). 

 
 

Table 1. Incomplete Information System 
Car Price Mileage Size Max-speed 
1 High High Full Low 
2 Low  Full Low 
3   Compact High 
4 High  Full High 
5   Full High 
6 Low High Full  

 
 

In Table 1,  AT={ Price, Mileage, Size, Max-speed }, then we have U/SIM(A)={SAT(1), 
SAT(2), SAT(3), SAT(4), SAT(5), SAT(6)}={{1},{2,6}, {3},{4,5},{4,5,6},{2,5,6}}. Tolerant classes are 
the basis of defining lower and upper approximations of a set XU. The A-lower approximation 
and the A-upper approximation of X are: 

 

})(:{)( XxSUxXA A   and })(:{)( XxSUxXA A                                             (2) 

  
Even though tolerance relation has been widely used in dealing with incomplete 

information system, it has the following drawbacks. In the first place, we can see that different 
two tolerant classes may have inclusion relation. For instance, in Table 1, SAT(2)SAT(6) and 
SAT(4)SAT(5) hold, this kind of situation sometimes is unreasonable when defining approximate 
sets. Furthermore, for all objects in SAT(x), they may have no common attribute values. For 
example, in Table 1, SAT (5)={4,5,6},  f(4, Price)={high} while  f(6, Price)={Low}. From this point 
of view, it is clear that objects 4 and 6 are discernable. From what have been discussed above, 
we should make a more reasonable classification in incomplete information system. 
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3. Rough Set Based on Optimal Compatible Class 
3.1. Compatible Relation 

Definition 3. Let S be an incomplete information system, each subset of attributes 
AAT determines a compatible relation COM(A). 

 
*}),(*),(),(),(,:),{()(  ayfaxfayfaxfAayxACOM                           (3) 

 
Definition 4. Let S be an incomplete information system and AAT, then U/COM(A) 

(represents classification) is defined as follows: 
 

))}(}){((),(:{)(/ ACOMxBBxUxACOMBBUBACOMU  2       (4) 
 
In Definition 3, compatible relation is really same to the tolerance relation. However, 

U/COM(A) in Definition 2 is quitely different with U/SIM(A) because any two elements in B are 
mutually compatible. Furthermore, if any other element in U is added into the compatible class, 
compatible relation in this compatible class will be destroyed anyway. This kind of compatible 
class meets with the actual needs more than tolerant class and as a result, it is called the 
maximal complete compatible class. 

For example, Let us consider Table 1, U/COM(AT)={{1}, {2,6}, {3}, {4,5}, {5,6}}. For any 
BU/COM(AT), B is the maximal complete compatible class. 

Property 1.  If COM(A) is a compatible relation, then: 
 


Aa

aCOMACOM


 )}{()(                                                                            (5) 

 
Theorem 1. Let S be an incomplete information system and ACAT, for any 

MU/COM(C), there must be NU/COM(A) such that MN. 
Proof. By ACAT and property 1, there must be COM(C)=(COM(A)∩(∩cC-ACOM({c}), 

then COM(C)COM(A). If MU/COM(C), then we have M2COM(C)COM(A). It means that 
any two elements in M are mutually compatible on set of attributes A. If MU/COM(A), then the 
theorem is obvious. If MU/COM(A), then, according to the knowledge of discrete mathematics, 
there must be one class such that MN and MU/COM(A). 

As far as U/SIM(A) is concerned, we can say about tolerant class for any xU, and for 
U/COM(A) we can only say about non-exclusive coverage of U by all maximal complete 
compatible classes. However, the following theorem tells us that maximal complete compatible 
classes are so tightly related with tolerant classes. 

Theorem 2. Let S be an in incomplete information system and AAT, then for any xU, 
)(},/:{ XSBxCOMUBB A holds. 

Proof. y∪{B:BU/COM(A), xB }, we have (x,y)COM(A)=SIM(A). By section 2, 
SA(x)={yU:(x,y)SIM(A)}, then there must be ySA(x). Since y is arbitrary, then we must 
have∪{B:BU/COM(A), xB } SA(x).  

For any ySA(x), (x,y)SIM(A)=COM(A) holds. If {x,y} is the maximal complete 
compatible class B, then the theorem is true. If {x,y} is not the maximal one, there must be B 
such that {x,y}B and BU/COM(A), then y∪{B:BU/COM(A), xB }holds. Since y is 
arbitrary, then  SA(x) ∪{B:BU/COM(A), xB }. 

From the above discussed, the theorem 2 is proved. 
 
3.2. Optimal Compatible Classes 

Let S be an incomplete information system, U/COM(A)={B1, B2,..., Bn} where AAT, for 
any xU, we call B1 the maximal complete compatible class of x if and only if 1 i  n and xBi. 
Nevertheless, it is not difficult to find that there may be two or more maximal complete 
compatible classes for xU.  

For example, the object 5 in Table 1, {4,5} and {5,6} are all it's maximal complete 
compatible classes. 
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It is natural to consider how to choose a class (called optimal compatible class) from 
several maximal complete compatible classes of object x for computing reduction. In the 
following, two different methods are presented. 

Method 1. The first method of choosing optimal compatible class roots from the basic 
idea of valued tolerance relation [13]. Simply, for xU, we should choose a maximal complete 
compatible class in which elements are most possibly having same values of attributes as x 
has. Assuming that the set of possible values on each attribute is discrete, we make hypothesis 
that there exits a uniform probability distribution among such values. Consider aAT in 
incomplete information system S and associate it to the set {a1, a2,..., am} of all possible values, 
given an object xU, if f(x, a)=, then we assume that the probability f(x, a)= aj (j=1,2,…, m) is 
equal to 1/Card({a1, a2,..., am}). 

Definition 5. The probability of two objects x, y having same value on a set of attributes 
A is prA(x,y)=   ),( yxpraAa  where pra(x,y) is the probability of two objects having same value 

on single attribute a. 
For any x, yU and aAT, pra(x, y) could be computed as follows: 
 



















),(),(:

),(),(:

*),(*),(:))(/(

*)),(*),((:)(/
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ayfaxf
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a

a

0

1

1

1
2

                                                (6) 

 
Definition 6. Let S be an incomplete information system in which AAT, for any xU, 

the optimal compatible class of x is SA
OPT(x)=Bi if and only if the value of 

 


}{
}){(/),(

xBy iA
i

xBcardyxPr  is maximal for any BiU/COM(A)xBi. 

Note 1. For xU, if there are two or more compatible classes have the same maximal 
value of { } ( , ) / ( { })

iy B x A iPr x y Card B x   , then their intersection is acceptable as the optimal 

compatible class of x. 
For example, the object 5 in Table 1, there are two maximal complete compatible 

classes, {4, 5} and {5, 6}. For maximal complete compatible class {4, 5},   1 1 1
2 4 85,4ATpr    , for 

maximal complete compatible class {5,6},   1 1 1 1
2 2 2 85,6ATpr     . Therefore, 

 5 {4,5} {5,6} {6}OPT
ATS    . 

Method 2. In method 2, we only consider those values are all known. In all maximal 
complete compatible classes of xU, there is at least one in which elements have the maximal 
numbers of attributes whose certain values are equal to the attributes' certain values of x. 

In incomplete information system S, let x, yU and aAAT, suppose that t=1 if and 
only if f(x,a)=f(y, a) while f(x, a) and f(y, a) are all known, otherwise t=0. Therefore, for any xU, 
AAT, we define { }( )

i iB y B x a Ax t      where xBi. 

Definition 7. In incomplete information system S, in which AAT, for any xU, the 
optimal compatible class of x is SA

OPT(x)=B if and only if the value of ( ) / ( { })
iB ix Card B x   is 

maximal for any BiU/COM(A)xBi. 
Note 2. For any xU, if there are two or more compatible classes have the same 

maximal value of ( ) / ( { })
iB ix Card B x  , then their intersection is acceptable as optimal 

compatible class of x. 
For example, in Table 1, there are two maximal compatible classes for object 5, 

N1={4,5}, N2={5,6}, respectively. According to definition 7, it is easy to work out 
1
(5)N =2 and 

2
(5)N =1, so Max(

1
(5)N ,

2
(5)N )=2,  5OPT

ATS ={4,5}. 

Definition 8. Given an incomplete information system S and a non-empty subset of 
attributes AAT, with each subset of objects XU we associate two sets: 

 

( ) { : ( ) }OPT OPT
AA X x U S x X    and ( ) { : ( ) }

OPT OPT
AA X x U S x X               (7) 
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Note 3. According to the compatible relation of rough set theory, A-lower and A-upper 
of X have two instances in respect that two different methods of choosing optimal compatible 
class. 
 
3.3. Comparison between Tolerance and Compatible Relations 

From the viewpoint of granular computing [14], classes are the basic building blocks 
and called elementary granules [15]. They are the smallest nonempty subsets that can be 
defined, observed or measured. Of course, different binary relations may produce different 
elementary granules. From what have been discussed above, classes produced by tolerance 
and compatible relations respectively, all form coverings on the universe. 

Each covering represents one granulated view of the universe. Due to the difference of 
methods in classifying, tolerance and compatible relations produce different coverings called 1  
and 2, respectively. According to Theorem 2, it is clear that covering 2 is a refinement of 
covering 1 or equivalently 1 is a coarsening of 2, denoted by 12 or 21, for the reason 
that every block of 2 is contained in some block of 1. Given two coverings 1 and 2, their 
meet 12 is the largest covering which is a refinement of both 1 and 2, and their join 12 is 
the smallest covering which is a coarsening of both 1 and 2. From what have been discussed, 
covering 2 has a smaller level of granulation for problem solving than covering 1. 

Let U be a non-empty finite set of objects, and let R U U   denote an binary relation 
on U. The pair apr=<U, R> is called an approximation space [1]. The covering of the universe is 
called the quotient set induced by R and is denoted by U/R. Even though rough set data 
analysis is a symbolic method of analysis, it uses counting information provided by the classes 
of the binary relations under consideration. The inherent statistic of an approximation space <U, 
R> is the accuracy measure of rough set approximation [1] ( ) ( ( )) / ( ( ))A Card A X Card A X  . It may 
be interpreted as the probability that an element belongs to the lower approximation, given that 
the element belongs to the upper approximation and expresses the degree of completeness of 
our knowledge of X. 

Tolerance and compatible relations produce different accuracy measures of rough set 
approximation named as 1( )A and 2( )A , respectively. According to theorem 2, it is easy to 

validate that ( ) ( ) ( ) ( )
OPTOPTA X A X X A X A X    , therefore, ( ( )) ( ( ))OPTCard A X Card A X  and 

( ( )) ( ( ))
OPT

Card A X Card A X , so we have 1 20 ( ) ( ) 1A A    . That is to say, with compatible 

relation, we can get more knowledge of X than tolerance relation. 
 
 

4. Knowledge Reduction 
An incomplete decision table [4] is an incomplete information system DT=<U, AT∪{d}, 

V, f> where d is called decision attribute and Vd is the value domain of the decision attribute d, 
correspondingly, elements in AT are called condition attributes. In addition, AT∩{d}= and 
Vd. 

Any decision table may be regarded as a set of decision rules of the form: ( , ) ( , )a v d w 

, where aAT, vVc, wVd. Owing to difference of classification between compatible and 
tolerance relations, the computation of generalized decision function [12] that is used in 
knowledge reduction should be modified. 

Definition 9. Let DT=<U, AT∪{d}, V, f> be an incomplete decision system and then the 
generalized decision function is defined as follows: 

 
: ( ), , { : ( ), ( )}OPT

A d A AU P V A AT i i d y y S x                                                   (8) 

 
Definition 10. Let DT=<U, AT∪{d}, V, f> be an incomplete decision system, AAT is a 

reduction of DT(relative reduction) iff A AT   and for any CA, C A  . 

In the process of investigation, it is convenient to use discernibility function [12] to 
compute reduction in incomplete information and decision systems. 

In incomplete decision system, for any AAT, let ( , )A x y  be a set of attributes aA 

such that (x,y)COM({a}) and as a result if (x,y)COM({a}) then ( , )A x y  . Let ( , )A x y  be a 
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Boolean expression that is equal to 1 if ( , )A x y  , otherwise, ( , )A x y  be a disjunction of 

variable corresponding to attributes contained in ( , )A x y . 

Definition 11.  is a discernibility function for incomplete decision system if: 
 

( , ) { : ( ) ( )}

( , )
A

A
x y U z U d z x

x y




   

                                                                            (9) 

 
Definition 12. ( )x  is a discernibility function for object x in incomplete decision 

system if: 
 

( ) { : ( ) ( )}

( ) ( , )
A

A
y z U d z x

x x y




  

                                                                           (10) 

 
 

5. Illustrative Example 
In this section, a medical treatment decision table will be analyzed by rough set based 

on compatible relation. Of course, two methods of choosing optimal compatible classes are all 
worked out. 

Table 2 depicts an incomplete decision table about medical treatment decision. 
Age,Sarcous pain, Fevered, and Headache are the conditional attributes, Remedial scheme is 
the decision attribute (in the sequel, a1, a2, a3, a4, and d will stand for Age, Sarcous pain, 
Fevered, Headach and Remedial schem, respectively). Va1={adult, enfant , infant}={1,2,3}, 
Va2={no pain,  pain}={1,2}, Va3={normal, hyperpyrexia}={1,2}, Va4={no headache, headache } 
={1,2}, and Vd={medical therapy, physical therapy, combination of medication and physics} 
={1,2,3}. 

 
 

Table 2. Medical Decision Table 
U a1 a2 a3 a4 d 
1 1   2 1 
2 1 2  2 1 
3 1  2 2 1 
4 1 1 1 2 2 
5 1  1  2 
6 2 1 1 2 2 
7  2 1  2 
8  2 2 1 3 
9 2 1 2 1 3 

10 3   1 3 

 
 
The following are ten decision rules for Table 2: 
r1: (a1, 1) (a2, ) (a3, ) (a4, 2) (d, 1) 
r2: (a1, 1) (a2, 2) (a3, ) (a4, 2) (d, 1) 
r3: (a1, 1) (a2, ) (a3, 2) (a4, 2) (d, 1) 
r4: (a1, 1) (a2, 1) (a3, 1) (a4, 2) (d, 2) 
r5: (a1, 1) (a2, 1) (a3, 1) (a4, ) (d, 2) 
r6: (a1, 2) (a2, ) (a3, 1) (a4, 2) (d, 2) 
r7: (a1, ) (a2, 1) (a3, 1) (a4, ) (d, 2) 
r8: (a1, ) (a2, 2) (a3, 2) (a4, 1) (d, 3) 
r9: (a1, 2) (a2, 1) (a3, 2) (a4, 1) (d, 3) 
r10: (a1, 3) (a2, ) (a3, ) (a4, 1) (d, 3) 
From Table 2. we have U/COM(AT)={{1,2,3},{1,2,5,7},{1,4,5},{6},{7,10},{8,10},{9}}. 

According to Method 1, we have: 
  

(1) {1,4,5}OPT
ATS  ; (1) {1,2,3}OPT

ATS  ;   (3) {1,2,3}OPT
ATS  ; (4) {1, 4,5}OPT

ATS  ; (5) {1, 4,5}OPT
ATS  ; 

(6) {6}OPT
ATS  ;     (7) {1,2,5,7}OPT

ATS  ; (8) {8,10}OPT
ATS  ;  (9) {9}OPT

ATS  ;      (10) {8,10}OPT
ATS   
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According to Method 2, we have: 
  

(1) {1,2,3}OPT
ATS  ; (1) {1,2,3}OPT

ATS  ;  (3) {1,2,3}OPT
ATS  ;  (4) {1, 4,5}OPT

ATS  ; (5) {1, 4,5}OPT
ATS  ; 

(6) {6}OPT
ATS  ;    (7) {1,2,5,7}OPT

ATS  ; (8) {8,10}OPT
ATS  ;   (9) {9}OPT

ATS  ;      (10) {8,10}OPT
ATS   

 
Owing to we have two methods of choosing optimal compatible classes, then two 

different generalized decision functions ( 1AT , 2AT , respectively) are worked out in Table 3. 

 
 

Table 3. Generalized Decision Functions 
U\AT 1 2 3 4 5 6 7 8 9 10 
ηAT1 1,2 1 1 1,2 1,2 2 1,2 3 3 3 
ηAT2 1 1 1 2 1,2 2 1,2 3 3 3 

 
 
Owing to different generalized decision functions, the computation of discernibility 

function will be different, too. Formally, using 1AT  we can compute out all of the relative 

reductions of Table 2: 
 

4(1) a  ;  2 4(2) a a  ; 3 4(3) a a  ; 1 2 1 3(4) a a a a   ;  1 3(5) a a  ; 1 3 1 4(6) a a a a   ;   

3(7) a  ; 3 4(8) a a  ; 1 3 1 2 4(9) a a a a a   ;   1(10) a  ; 1 2 3 4a a a a  . 

 
From relative reductions of objects, we can get following compact rules: 
r1

’: (a4, 2) (d, 1) (d, 2)          
r2

’: (a1, 1) (a2, 2)  (d, 2)        
r3

’: (a3, 2)  (d,2)                      
r4

’: (a1, 2)(a4, 2) (d, 2)          
r5

’: (a3, 2) (a4, 1) (d, 3)        
r6

’: (a1, 2)(a3, 2)  (d,3)         
r7

’: (a1, 2) (a2, 1)(a4, 1) (d, 32) 
r8

’: (a3, 2)) (d, 3) 
Using 2AT  we can also compute out all of the reductions in Table 2: 

 

1 2(1) a a  ; 2 4(2) a a  ; 3 4(3) a a  ; 1 2 1 3 4(4) a a a a a    ; 1 3(5) a a  ; 1 3 1 4(6) a a a a   ; 

3(7) a  ; 3 4(8) a a  ; 1 3 1 2 4(9) a a a a a   ; 1(10) a  ;  1 2 3 4a a a a  . 

 
Similarly to rules inducing by method 1 of choosing optimal compatible classes, it is not 

hard to bring out the rules by method 2 and the outcomes are same to r1',…,r8'. 
 
 

6. Conclusion 
Rough set theory assumes that knowledge comes from the ability of classification. 

However, an explicit hypothesis in rough set is that all available objects can be completely 
described by the set of attributes. In order to manage objects who have incomplete descriptions 
of attributes, so many scholars have done excellent jobs. In this paper, the compatible relation 
and maximal complete compatible classes are presented. The main advantage of compatible 
class is that it can make sure that all elements in the same class are mutually compatible while 
tolerant class cannot. From the knowledge reduction based on compatible relation, some 
compact rules are mined. In the further researches, we are going to define some precise 
measurements to weigh the reliability of those rules mined from incomplete information 
systems. 
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