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Abstract
Provable data possession (PDP) is a technique for ensuring the validity of data in storage

outsourcing. The main issue is how to frequently, efficiently verify that an untrusted server is correctly
storing its client’s outsourced data. In this paper, we introduce a robust provable data possession protocol
that allows a client that has stored he/her data at an untrusted server to verify the validity of data without
retrieving it. The client preprocesses the data and sends it to an untrusted server for storage, while
keeping a small amount of meta-data. Then the client generates probabilistic proofs of possession by
sampling a random set of blocks from the server to prove that the stored data has not been tampered with
or deleted, which drastically reduces I/O costs. In additions, by means of the careful integration of online
codes and PDP (O-PDP), the scheme can recovers a small amount of the file, once it has been deleted.
Finally, we conduct an experimental evaluation to study the performance, and robustness of O-PDP.
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1. Introduction
Outsourcing of data allows the data owner (client) with limited resources moves its data

to a remote server (e.g. Cloud Storage Service Providers) which is supposed to correctly store
the data and make it available to the client on demand. The mainly advantages of data
outsourcing include reduced costs from savings in storage, maintenance and as well as
increased availability. Unfortunately, the server that stores the client’s data is untrusted.
Therefore, the client need verify if their data has been tampered or deleted. How to verify the
availability of data has turned into a critical issue in outsourcing data services.

A number of research issues in data outsourcing have been studied in the past twenty
years. Early work concentrates on data authentication, i.e., how to efficiently verify that the
server returns correct and complete results in response to its clients’ queries [1-2]. The following
work focused on outsourcing encrypted data and associated difficult problems mainly having to
do with efficient querying over encrypted domain [3-6].

Ateniese et al. [7] firstly proposes a model called provable data possession (PDP). In
this model, data (represented as a file F ) is preprocessed by the client, and the client produces
metadata used for verification purposes. The file F and metadata are then sent to an untrusted
server, and the client can deletes the local copy of the file and store the metadata locally. By
randomly choose a set of block from the file, the client makes a challenge, and then the server
compute a proof corresponding to the challenge sent by the client, the client keeps some secret
information to verify server’s proof later. The author presents several variations of their scheme
under different cryptographic assumptions. Juels et al. [8] proposes a model for proofs of
retrievability (PORs), which focusing on static archival storage of large files. Their scheme’s
effectiveness rests largely on preprocessing steps before sending a file F to the server:
“sentinel” blocks are randomly inserted to detect corruption, F is encrypted to hide these
sentinels, and error-correcting codes are used to recover from corruption. As expected, the
error-correcting codes improve the error-resiliency of their system. Unfortunately, the number of
queries a client can perform is limited.
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According to Curtmola [9], a robust provable data possession means that can recovers
the data, once it has been deleted. That’s to say, to damage a file, an adversary must deletes a
larger amount of data, which easily detected. Inspired by Juels [8], Bowers et al. [10] propose
an optimized application of FEC codes. They establish the bounds under which a client is able
to retrieve its data from the server, meanwhile, integrate error-correcting codes with spot
checking can acquire a robust possession guarantee. This concept plays a more prominent role
as the remote storage community moves from the theoretical to the practical. The same pairing
of erasure coding with data checking has been used by remote storage systems that distribute
or replicate data among many servers [11]. Indeed, the proposed use of FEC codes in the
frameworks of [10] is not optimal and may lead to reduced performance. Meanwhile, spot
checking are probabilistic in nature and cannot detect corruption of small parts of the data (e.g.,
1 byte).

In this paper, we propose a robust provable data possession (PDP) protocol that
provides probabilistic proof that the remote server stores a file correctly. We focus on the
provable data possession (PDP) [7] framework, as being representative for remote data
checking based on spot checking. And more importantly, PDP allows easy and immediate
integration with online codes to improve the data possession guarantee: A file F is first
encoded using an online code and PDP is then applied on the encoded file F (instead of F ).
The original PDP framework provides the ability to detect if the server corrupts a fraction of F .
When combined with an appropriate online code, a PDP scheme can provides the following
robust data possession guarantee for the encoded file F :

1) Protection against corruption of a large portion of F : The client will detect with
high probability if the server corrupts more than a fraction of F

2) Protection against corruption of a small portion of F : The client will recover the
data in F with high probability if the server corrupts at most a fraction of F

This paper’s contribution is two-fold. Firstly, we propose a robust provable data
possession (O-PDP) that provides proof of possession, which can detect corruption of small
parts of the data with high probability. Secondly, through the careful integration of online codes
and PDP, the scheme we proposed can recover the data when a small amount of the file has
been deleted or missed.

We list the features of our PDP schemes (O-PDP) in Table 1. We also include a
comparison of related techniques [7, 9], and [12]. Both schemes in [12] cannot provide a data
possession guarantee, but improve storage complexity. Specifically, n : the number of data block
in F ; c : the number of request data block.

Table 1. Features of Various PDP Schemes when the Server Misbehaves by Deleting a
Fraction of an n-block file (e.g., 1% of n)

schemes data
possession

computational
complexity

communication
complexity

decoding
complexiy

probability
testing

robustness

[12] NO  1O  1O ---- NO NO

[7]
E-PDP

Yes  O n  O c ---- YES NO

[9] Yes  O c  O c   lnO n n YES YES

O-PDP Yes  O c  O c  O n YES YES

The rest of the paper is organized as follows. In Section 1, we present the notations
used throughout the paper and describe the online codes informally. Section 2 introduces our
main construction. In Section 3, we discuss its correctness. We support our theoretical claims
with experiments that show the performance of our scheme in Section 4 and conclude in
Section 5.
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2. Spot Checking and Online Codes
In this section, we first describes the “spot checking” algorithm. We can prove data

possession with high probability by verifying a small amount of blocks, which obviously
improves the performance of scheme. After formalizing the spot checking algorithm, we give an
overview of online codes. We refer the reader to [13] for a more detailed exposition. In the end,
we give a formally definitons of the robust provable data possession.

2.1. Spot Checking
For an effective solution, the amount of block accesses at the server should be

minimized, for the server may be involved in concurrent interactions with many clients. To
improve the performance, our construction introduces a technique that allows the client makes a
challenge by randomly choosing a subset of blocks, which named as “spot checking”. We can
prove data possession with high probability based on accessing a fraction of the file, which
obviously improves the performance of scheme. Once the server deletes a fraction of the file,
the client can detects server misconduct with high probability by verifying a small amount of
blocks, independently of the total number of file blocks. As an example, for a file with 100000n 
blocks, if S has deleted 1% of the blocks, then C can detects server misconduct with
probability more than 99% by asking proof of possession for only 1000 randomly selected
blocks. For more details see Section 5.4.

2.2. Online Codes
In this section, we informally describe the online codes, which first proposed by [13].

Starting with a file F of size n data blocks. Online codes are parameterized by the block size
and two variables, k and  . k and  define the relation between the complexity and
performance of the online codes. The authors suggest 3k  and 0.005  . The algorithm
consists of three phases.

2.2.1. Preprocess
First the n data blocks are translated into a composite message by appending some

auxiliary blocks. Each auxiliary block is the exclusive-OR of some number of the original
message blocks.

2.2.2. The Encoding Process
From the composite message, we generate encoding blocks of size (1 )k n . Encoding

blocks are named as check blocks below. A check block is the exclusive-OR of i data blocks,
which are selected uniformly and independently from a ordered set of all composite blocks; i is
the degree of one check block. The degree is chosen randomly according to a appropriate
probability distribution 1 2( , ,.... )Lp p p p , such that degree i is chosen with probability ip ,

where
1

1
L

ip  . The L is a constant.

2.2.3. The Decoding Process
For each check block e , all of whose data blocks are recovered, except for one. We call

this data block xm . We have 1 1x im e m m    , where 1 1,...., im m  are the recovered data
blocks that are corresponding to e . Apply this step until no more data blocks can be decoded.
Upon receiving a certain number of check blocks some fraction of the composite message can
be recovered. The composite message can be used to recover the original message. For more
details in [14].

The main result of online codes is the following theorem, which is useful for our
construction, especially, for robust.

Theorem 1. For a file F of size n data blocks, and parameters k and  , the

probability that can recover a 1  fraction of the original message from check blocks is 1( )
2

k  .
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Figure 1. High Level View of Online Codes

2.3. Definition of O-PDP
In this paper, we propose a robust version of provable data possession, which adapts

from [7].
Definition 1 Robust provable data possession (O-PDP). An O-PDP scheme is a

collection of six polynomial time algorithms (Encode, KeyGen, TagBlock, ChalGen, GenProof,
CheckProof) such that:

( )Encode F . Takes an original file F as input, and then encode into the encoded file F .
(1 )kKeyGen .Takes the security parameter k as input, output ( , )pk sk such that

( , )pk N g and ( , , )sk e d  .
( ,sk, )iTagBlock pk m . It takes as inputs a public key pk , a secret key sk and a file block

im , and returns the verification metadata ( , )
im iT W .

1,( )ChalGen c k . Takes 1k as input, 1k is the key of a pseudo-random permutation  ,
and then choose randomly a subset chalset of size c .

,( )chalGenProof c set . Takes c and chalset as inputs, output the ( , )Ver T  .
, ,( , )chalCheckProof pk sk set Ver . Run by the client to validate a proof of possession. It

takes as inputs a public key pk , a secret key sk , a set chalset of size c , and a proof of
possession ( , )Ver T  . It returns whether Ver is a correct proof of possession for the blocks
determined by chalset .

3. The Construction
A robust provable data possession scheme incorporates mechanisms for mitigating

arbitrary amounts of data corruption. We consider a notion of mitigation that includes the ability
to both efficiently detect data corruption and recover the corrupted blocks. When data corruption
is detected, the client can recover data in time. That’s to say, a robust scheme ensures that no
data will be lost. Formally, we define the robustness of provable data possession scheme as
follows:

Definition 2 Robustness. A robust provable data possession scheme O PDP is a
two-tuples ( )Ρ,Ο , where P is a provable data possession scheme for a file F , and O is a

coding procedure(online code ) that yield F applied on F . The provable data possession
scheme is robust, if it has the following two properties: (I) the client can detect w.h.p if the server
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corrupts more than a  fraction of F ; (II) the client can recover the data F w.h.p if the server

corrupt at most a  fraction of F .
The implementation of robust data possession guarantee for F can be described as

follows: firstly, the file F is encoded using an online code and PDP is then applied on the
encoded file F (instead of F ). When combined with an appropriate online code, a PDP scheme
can provides a robust data possession guarantee for the encoded file F . Compared with other
rateless erasure codes, the decoding complexity of online codes is ( )O n ; meanwhile, the
decoding complexity of R-S is 2( )O n .

3.1. The Notations
In this section, we introduce some notations used throughout the work.  is the security

parameter, and  is the key of a pseudo-random permutation. Let ' 1p p 2 and 1q q '2 be
safe primes and let N pq be an RSA modulus. A file F is consist of a finite ordered collection
of n blocks: 1 2( , ,..., )nF m m m . Let g be a generator of NQR , which is the unique cyclic
subgroup of *

N of order ' 'p q . All exponentiations are performed modulo N .

3.2. The Protocol
The protocol can be divided into four steps. Firstly, we preprocess the tag for each data

block im of the file F and then store the file F and its tags ( , )
im iT W with a server S . Secondly,

the client C generates a challenge by randomly choose a subset of file. Thirdly, using the
challenge, the server S generates a proof of possession. Finally, the client C verifies the
validity of the proof. It is worth noting that the client C stores on the server S a file F (instead
of F ), which is a finite ordered collection of (1 )k n blocks:  1 2 (1 )( , ,..., )k nF m m m  .

Let  be a pseudo-random permutation and let h be a cryptographic hash function:
2 2log ( ) log:{0,1} {0,1} {0,1} ;p q p qh   

' ' ' '( )

2 2log ( ) log ( ):{0,1} {0,1} {0,1}n n  

(1 )kKeyGen . The keys are generated as the following way. Firstly, choose randomly two
distinct safe primes 'p and 'q , compute '2 1p p  , '2 1q q  , let N pq be an RSA modulus.
Secondly, choose randomly *

R Na  such that gcd( 1, ) 1a N  , and compute 2g a . In the
end, compute e and d such that ' '1mod( )ed p q , where e is a secret prime such that e 

and d  , choose randomly {0,1}R
  . Output ( , )pk sk such that ( , )pk N g and

( , , )sk e d  .
( ,sk, )iTagBlock pk m . Preprocess a tag ( , )

im iT W for each block im of the file. Generate

||iW i , compute ( )( ) modi

i

h m d
m iT W g N  , output ( , )

im iT W .

1,( )ChalGen c k . Choose randomly a subset j chali set of [1,2,...., (1 ) ]k n , where
1 j c  ,

1
( )j ki j , 1k is the key of a pseudo-random permutation  , and c is the size of

chalset . 1( , , )chal c k S .

,( )chalGenProof c set . The server generates
1
( )j ki j , compute

1
i j

c

m
j

T T


 ,

1
( ) ... ( )

1

modi ic

j

c
h m h m

i
j

W g N  



 . The proof is ( , )Ver T  .

, ,( , )chalCheckProof pk sk set Ver . The client checks the validity of the proof ( , )Ver T  .
Compute T  e , if mod N  , then output “success”. Otherwise output “failure”.
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4. Correctness
The scheme is based on the KEA1 assumption which was introduced by Damgard in [14].

In particular, Bellare and Palacio [15] provided a formulation of KEA1, that we adapt to work in the
RSA setting.

Theorem 2. According to the KEA1-assumptions [14], the scheme we proposed can
correctly verifies the validity of the server’s proof for the encoding file F by checking if a certain
relation holds between T and  .

Proof: The client pre-computes ( )( ) modi

i

h m d
m iT W g N  for each data block im of the file

F , then stores the file F and its tags ( , )
im iT W with a server S . The client generates a random

challenge corresponding to a randomly selected set chalset , and then the server S generates a
proof ( , )Ver T  for the set chalset in response to the challenge. In the end, the client C

verifies the validity of proof. According to the KEA1-assumptions, the server S generates

1
( )j ki j , and then compute

1
i j

c

m
j

T T


 , 1
( ) ... ( )

1

modi ic

j

c
h m h m

i
j

W g N  



 . The proof is

( , )Ver T  . The client C has a secret key e , he/her can computes T  e . If mod N  ,
then output “success”. Otherwise output “failure”.

5. Analysis
We measure the performance based on our implementation of O-PDP in Linux. All

experiments were conducted on an Intel 2.2 GHz systems, and 2048 MB of RAM. The system
runs ubuntu 12.04 TLS. Algorithms use the NTL version 5.5.2 with a modulus N of size 1024
bits and files have 24KB blocks. As a basis for comparison, we have also implemented the
scheme of Ateniese et al. [7]，which named as E-PDP.

5.1. Preprocess Time
In preparing a file for outsourced storage, the client firstly generates its tags for verify. In

this experiment, preprocess time is the time of metadata generation, which does not include the
time of loading data to the client and the time of transferring metadata to disk. Figure 2 shows
that the pre-processing time as a function of file size for O-PDP and E-PDP. Compared with E-
PDP, O-PDP exhibits slower pre-processing performance. In order to generate the per-block
tags, O-PDP performs an exponentiation on every file block (including the auxiliary block) of file
F rather than F .

Figure 2. The Comparison of Preprocess Time

5.2. Challenge Time
Figure 3 shows the computation time as a function of block size when computing a

proof for E-PDP and O-PDP. Note the logarithmic scale. Computation time includes the time to
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access the memory blocks that contain file data in cache. We restrict this experiment to blocks
of 768KB or less, because of the amount of block size suggested by E-PDP. E-PDP radically
alters the complexity of data possession protocols. For blocks of 768KB, E-PDP is more than
11.5 times faster than O-PDP. For O-PDP performance grows linearly with the file size, because
it exponentiates the entire file. According to the result, we can conclude that the integration of
online code can make the PDP scheme robust, which also sacrifice the performance of scheme,
especially, the challenge time.

Figure 3. The Comparison of Challenge Time

5.3. Pre-processing vs. Challenge Time with Each Block Size
O-PDP also exponentiates data that was reduced modulo N but does not reap the

same speed up, because it must do so for every block. Figure 4 shows that this trade-off
indicates that the best balance occurs at natural file system and memory blocks sizes of 20-30
KB. In order to achieve the best balance, we can choose the size of one block is 24KB.

Figure 4. O-PDP’s Pre-processing vs. Challenge Time with Block Size for a 16MB File

5.4. Robustness
The robustness of the scheme we proposed including two aspects:
1) The probability that client can detects the data corruption when the server corrupts

more than a  fraction of F . Our scheme allows that the server can proves possession of

selected blocks of F . Spot checking greatly reduces the workload on the server, while still
achieving detection of server misbehavior with high probability. We now analyze the probability
as follows. Assume S deletes t n blocks out of the n-block file F . Let c be the number of
different blocks for which C asks proof in a challenge. Let X be a discrete random variable
that is defined to be the number of blocks chosen by C that match the blocks deleted by S . We
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compute XP , the probability that at least one of the blocks picked by C matches one of the
blocks deleted by S . We have:

1

0

{ 1} 1 { 0} 1
c

X
i

n i t
P P X P X

n i





 
      

 (1)

Since,

1

1

n i t n i t

n i n i

    


  
(2)

We have:

1
1 ( ) 1 ( )

1
c c

X

n t n c t
P

n n c

   
   

 
(3)

3) The probability of the data can be restored, which have been corrupted, but have not been
detected. In the construction, c blocks were chosen randomly from the encoded files. We
assume that the ratio of corrupted data block is  ( 0 01.  ). Figure 5 shows that, the
detection probability is more than 0.99. According to the previous parameters 0 005k =3, = . ,
and theorem 1, we conclude that the probability that data can be restored is more than
0.9999.

Figure 5. O-PDP Detection Probability vs. the Number of Request Blocks

6. Conclusion
In this paper, we propose a robust provable data possession protocol. Key component

of our scheme is the careful integration of online codes and PDP. By introduce the online codes;
the protocol can verify data possession without access the actual data file, and recovery data
when it was corrupted. Experiments show that our scheme, which offers a probabilistic
possession guarantee by sampling the server’s storage, is practical to verify possession of large
data sets. Given the practical importance of the online codes and the emergence of storage
outsourcing service, we believe the study of robust provable data possession to be important
and well motivated.
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