
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol. 12, No. 9, September 2014, pp. 7007 ~ 7013
DOI: 10.11591/telkomnika.v12i9.4876 7007

Received October 22, 2013; Revised June 27, 2014; Accepted July 21, 2014

A Double-Efficient Integrity Verification Scheme to
Cloud Storage Data

Deng Hongyao*1,2, Song Xiuli3, Tao jingsong4
1School of Mathematics & Computer Science, Yangtze Normal University,

No. 98 Julong Rd., Lidu Fuling District, Chongqing, 408000, China. Ph: +86 18996411262
2School of Information & Software Engineering, University of Electronic Science and Technology of China,
No. 2006, Xiyuan Ave., West Hi-Tech Zone, Chengdu, 611731, Sichuan China, Ph/Fax: +86 28 83201864

3Dept. of Computer Science and Technology, Chongqing University of Posts and Telecommunications,
No. 2 Chongwen Rd., Nan-an District, Chongqing, 400065, China, Ph: +86 23 62461404

4School of Electrical Engineering, Wuhan University,
Luojiashan,Wuchang, Wuhan,430072, China, Ph: +86 27 68770776

*Corresponding author, e-mail: hydeng_2004@163.com1, songxl@cqupt.edu.cn2, jamson_tao@163.com3

Abstract
This paper proposed two integrity verification schemes based on Schnorr Signature Scheme. One

is safety integrity verification scheme (SIVS). Another is efficient integrity verification scheme (EIVS). They
are difference in characteristics. EIVS has good computational costs while SIVS has high security
guarantee. However, they are similar in work. The cloud storage server will choose a set of file blocks and
verification blocks randomly while the user sends a challenge, and generate response values to send to
the user. The user generates a set of signatures to verify the values. The aim is to check whether the cloud
storage server preserves perfectly the user's file or not. In contrast with other schemes, the approach not
only has double integrity verification guarantee schemes but also pay lower costs for communication and
computation.

Keywords: cloud storage, Schnorr signature scheme, double-efficient verification, challenge & response

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction [1]. Cloud storage is a model of networked
online storage where data is stored in virtualized pools of storage which are generally hosted by
third parties. Hosting companies operate large data centers, and users who require their data to
be hosted buy or lease storage capacity from them[2]. When the users store their data to cloud
storage servers, they will gain a real convenience and save more investment. However, the
users might lost control on their own data, and they might be unclear which device their data are
stored at, so they are greatly concerned about the integrity of these data in cloud storage
servers. How to verify remote data possession and data integrity, many scholars have carried
out relevant research.

In 2003, Deswarte et al. [3] proposed a data integrity verification scheme based on RSA
algorithm. The scheme, intending to check the integrity of remote data, performed
exponentiation operation on entire document based on RSA algorithm. Ateniese et al. [4] built
upon a Provable Data Possession (PDP) model to allow the user to utilize RSA-based
homomorphic tags to challenge the server, which selected randomly data blocks and tags to
generate the proofs to prove he stored intact the user's data. In a subsequent work, Curtmola et
al. [5] proposed a multiple replica PDP (MR-PDP) scheme. This scheme ensured that multiple
replicas of the user's data were stored at the untrusted storage server. In [6], Chen used
homomorphic hash to present another PDP method, and the user's data would be preserved
well in cloud storage server by the method. Juels et al.[7] described a Proof of Retrievability
(PoR) model, and this model used spot-checking and error-correcting codes to ensure both
"possession" and "retrievability" of the files on remote servers. In [8], the scheme allowed the

 ISSN: 2302-4046

TELKOMNIKA Vol. 12, No. 9, September 2014: 7007 – 7013

7008

verifier challenge the server without limit, and the server converge the tags of all data blocks
into a short tag that would be taken as response message to the verifier. In [12], Cong Wang et
al. utilized the homomorphic token to ensure the integrity of erasure-coded data with additional
feature of data error localization. In a subsequent work, Qian Wang et al. [13] allowed a third
party auditor to verify the integrity of the data stored in cloud based on Merkle hash tree.

Unfortunately, the computational complexity of above some schemes is too height, such
as [3], some major cause lay in the fact that the server must exponentiate the entire file and
access all of the file’s blocks. The challenge number of some schemes is limit, such as [7]. To
each check, "sentinel" must be disclosed to the server, and the verifier can't use again leaked
"sentinel". Scheme [4] and [8] remedy partially some drawback of scheme [3] and [7] as the
server selected randomly some of data blocks to achieve the probability of successful
verification. The two schemes lower the computational requirements for the server and allow the
verifier challenge the server without limit, but the time generating authentication tags is too long.
This paper will propose two integrity verification schemes to improve above schemes in
computational complexity.

2. Schnorr Signature Scheme
Schnorr signature scheme was proposed by Claus P. Schnorr, and it was patented in

1991 [9]. In order to describe our integrity verification schemes better, we adjusted the values of
the parameters of Schnorr Signature Scheme.

Supposed p and q are two big prime, and 1p is a multiple of q ; g is a generator of
*
pZ , and pg q mod1 ; x is a private key of *

qZ ; y is a public key and pgy x mod ;)(h is an
approved cryptographic hash function. If a signer signs the message m , then he chooses
randomly a secret number *

qZr and computes

 qrxesumhepgu r mod,||,mod (1)

The signer sends the message m and the signatures),(se to the receiver. If the
receiver has received m and),(se , in order to verify the validity of the signature, then he first
computes

)(mod' pygu es (2)

And checks the following equation:

 '||? umhe (3)

If the equation is true, then the signature is valid. Otherwise, the signature is invalid.

3. Safety Integrity Verification Scheme Based on Schnorr Signature
We propose a verification scheme based on Schnorr Signature Scheme, which is

named safety integrity verification scheme (SIVS). The parameters of SSIV are defined next.
We suppose that p is 1024-bit prime; q is 160-bit prime, and 1p is a multiple of q ; g is a
generator of *

pZ , and pg q mod1 ; x is a private key of *
qZ ; y is a public key and pgy x mod ;

)(h is an approved cryptographic hash function;)(f is a pseudo-random function;)(is a
pseudo-random permutation; kkkk }1,0{,, 321 are three keys, where k is the length of the
three keys.

TELKOMNIKA ISSN: 2302-4046

A Double-Efficient Integrity Verification Scheme to Cloud Storage Data (Deng Hongyao)

7009

3.1. Pro-processing Phase
Before the user sends his the file F to the cloud storage server, he firstly splits file F

into n blocks: nmmmF ,,, 21 , and each block has l bits. Then he uses pseudo-random
function)(f keyed with 1k to derive random sequence niir 1

)(
1

irfr ki ,)1(ni (4)

Where r is an initial secret random number. To each file block im and each random number ir

)1(ni , the user computes:

)(,mod,mod niiqxmspgu ii
r

i
i , nmmmhE |||||| 21 (5)

The user sends the set of file blocks),,,(21 nmmmF and the set of verification blocks
),,,(21 nuuuU to the cloud storage server and deletes their copies from his local storage. The

user stores the set of signatures),,,(21 nsssS and hash value E on the local, and they will be
used on the verification and retrieve file phase.

3.2. Challenge Phase
Which storage device that the file F has been stored at? The user does not know, so he

challenges the cloud storage server to verify whether the file is preserved intact in cloud or not.
The user's challenge values are),,,,(32 ykkcfIDChal , where fID is identity number of the file F ;
c is the number of challenged blocks, nc 1 ; 2k and 3k are chosen randomly for each
challenge; y is the user's public key.

3.3. Response Phase
After the cloud storage server has received the challenge values),,,,(32 ykkcfIDChal , he

uses pseudo-random permutation)(keyed with 2k to generate indices of challenged blocks
)(

2
ji kj)1,(1 nicj j . Also, he uses pseudo-random function)(f keyed with 3k to

derive coefficients)(
3

jfkj),1(*
qj Zcj . Here, c ,,, 21 are randomly generated for

each challenge.
In pro-processing phase, the cloud storage server holds the set of file blocks

),,,(21 nmmmF and the set of verification blocks),,,(21 nuuuU . Grounded on the block

indices)1(cji j , he chooses the subset of file blocks),,,(
21

~

ciii mmmF and the subset of

verification blocks),,,(
21

~

ciii uuuU , then computes:

)(mod)(
1

pu
c

j
i

j

j

 ,)(mod
1

qmv
c

j
ij j

 ,)(mod pyT v (6)

The cloud storage server sends response values),(T to the user, and takes them as
the proofs of possessing file F .

3.4. Verification Phase
After the user has received response values),(T , he also computes indices of

challenged blocks)(
2

ji kj and random coefficients)(
3

jfkj)(1 cj . Then the user

chooses the subset of the signatures),,,(
21

~

ciii sssS from the set of signatures
),,,(21 nsssS which has been saved previously on the local. Further, the user computes:

 ISSN: 2302-4046

TELKOMNIKA Vol. 12, No. 9, September 2014: 7007 – 7013

7010

)(mod
1

qsw
c

j
ij j

 (7)

Then he checks the following equation:

)(mod? pTg w

 (8)

If the equation is true, then the user believes that the cloud storage server preserves
well his file F . Otherwise, verification fails. The above equation holds because:

)(mod)(mod)(mod 11 pygpygpTg

c

j
jij

c

j
jij ms

vww

)(mod)(mod 111

)(

pgpgg

c

j
jij

c

j
jij

c

j
jijij rmxrxm

)(mod

)(mod

1

1

pu

pg

c

j
i

c

j

r

j

j

jij

3.5. Retrieve File Phase
At a later time, when the user needs his file F , he sends a request message req(fID) to

the cloud storage server. After the cloud storage server receives message req(fID), he sends
back file blocks),,,(''

2
'
1

'
nmmmF to the user. The user uses hash function to compute:

 ''
2

'
1

' |||||| nmmmhE (9)

The user compares the set of hash values 'E with E , and E has been saved on the
local by himself in pro-processing phase. If EE ' , then FF ' , it means that the file blocks
are intact. If EE ' , then FF ' , it means that some file blocks have been altered in network
transmitting or on cloud storage [10].

4. Efficient Integrity Verification Scheme Based on Schnorr Signature
We modify SIVS scheme to attain a more efficient scheme based on Schnorr Signature

Scheme, which is named efficient integrity verification scheme (EIVS), but it has weaker security
guarantee than SIVS.

In pro-processing, the user computes:

)(mod pgu ir
i ,)||(iii umhe ,)(modqrxes iii ,)1(ni , neeeE |||||| 21 (10)

Here, EIVS doesn't use file blocks im)1(ni to compute signatures is)1(ni , but
uses hash values ie)1(ni to compute signatures. In response phase, all values of

)1(cjj are set to 1, here, the cloud storage server computes:

)(mod
1

pu
c

j
i j

 ,)||(
jjj iii umhe ,)(mod

1

qev
c

j
i j

 (11)

Now, the scheme doesn't add all file blocks im)1(ni to generate v , but add all hash
values ie)1(ni to generate it.

TELKOMNIKA ISSN: 2302-4046

A Double-Efficient Integrity Verification Scheme to Cloud Storage Data (Deng Hongyao)

7011

In verification phase, all values of)1(cjj are also set to 1, then the user
computes:

)(mod
1

qsw
c

j
i j

 (12)

Here, the user checks if below equation holds:

)(mod? pTg w

 (13)

5. Security and Performance Analysis
EIVS scheme substitutes hash values ie for file blocks im to generate signatures is and

v , also, all values of coefficients)1(cjj are set to 1, so it improves operation speed and
reduces computational costs. But EIVS scheme can only verify the cloud storage server stores
well the sum of hash values, and cannot guarantee that the cloud storage server preserves
intact all file blocks. Therefore, in the short term, the user could use EIVS scheme to verify the
integrity of his own file. In the long term, the user must use SIVS scheme to verify the integrity of
the file to enhance the verification effect. To security analysis, we are only aimed at SIVS
scheme. To performance analysis, we consider both schemes.

5.1. Security Analysis
The security of Schnorr Signature Scheme is based on the intractability of discrete

logarithm problem, and the scheme satisfies the security notions in the random oracle model.
The scheme has a shorter length of signature than RSA and ElGamal signature scheme at the
same level of security. Our SIVS scheme are proposed based on Schnorr Signature Scheme,
so it also satisfy the security notions in the random oracle model.

SIVS scheme gives double integrity verification guarantee to cloud storage data. One
guarantee, in response and verification phase, the user checks response values),(T to judge
whether all file blocks are preserved intact in the cloud storage server. The other guarantee, in
retrieve file phase, the user compares hash values 'E with E to judge whether some file blocks
have been altered in network transmitting or on cloud storage.

In response and verification phase, let us assume that the cloud storage server has lost
some of file blocks, but preserves well all verification blocks, it can be proved that the cloud
storage server can't pass through the user's integrity verification. The processes of this proof
are as follows:

If the user and the cloud storage server chooses the subset of file blocks

),,,(
21

~

ciii mmmF as challenged blocks, but the cloud storage server has lost file blocks
),,(

kj ii mm , where, },,{},,{ 1 ckj iiii . Accordingly, the cloud storage server falsifies file
blocks),,(

kj ii bb with),,(
kj ii mm replacement, then he computes:

)(mod,,,,,,
11

' pmbbmv
ckj icikiji ,)(mod

'' pyT v (14)

According to our hypothesis, the verification blocks),,,(21 nuuuU are stored
perfectly in cloud. So when the cloud storage server chooses challenged verification blocks

),,,(
21

~

ciii uuuU from U to generate , the value of is no change with fake challenged file
blocks.

After the user has received response values),(' T , he computes the value of w , and
verifies the relation)(mod? ' pTg w

 whether is true or not. If the relation is true, then

)(mod' pTT , this means)(mod
),,,,,,(),,,(112211 pyy cickikjijicicii mbbmmmm

 . If we could find out

 ISSN: 2302-4046

TELKOMNIKA Vol. 12, No. 9, September 2014: 7007 – 7013

7012

*
qZBA to let)(mod pyy BA , then)(mod

'

pyy vv , but this is impossible[11]. So in
verification phase, when the cloud storage server substitutes fake file blocks for original file
blocks, he can't succeed on the user's integrity verification.

In retrieve file phase, we suppose the cloud storage server has lost original file blocks

tl mm ,, When the cloud storage server substitutes fake file blocks tl bb ,, for file blocks

tl mm ,, and send them to the user, the user first computes hash value
)||,||,||,||,||,||,(1

'
ntl mbbmhE . Then he takes out nmmmhE |||||| 21 on the local, and

checks below equation whether is true or not.
)||,||,||(?)||,||,||,||,||,||,(211 nntl mmmhmbbmh

To make the equation true, unless the cloud storage server can find out the value of
hash collision. This means he can find out hash values)(Ah and)(Bh , let)()(BhAh on the
premise BA , but this is not feasible [11]. In view of this, the user thinks that some file blocks
have been altered in network transmitting or on cloud storage.

5.2. Performance Analysis
Comparing our SIVS and EIVS schemes with S-PDP in Ateniese [4] and Wang [13]

schemes, in order to maintain the fairness, we don't consider communication and computation
costs of root nodes and auxiliary authentication information in Wang [13] scheme. In the four
schemes, if we suppose the size of each file block im is the same, and total number of file
blocks n is also the same. Moreover, the number of challenged file blocks c is also the same.

In the four schemes, communication costs are mainly composed of the costs of
challenge and response values. In Wang [13] scheme, the TPA takes values },{ ivichal as
challenge values and sends them to the server. Moreover, the server returns the set of
information }),(,,{ iimH as response values to the TPA, so communication costs of Wang
[13] scheme are the highest in the four schemes. However, the communication costs of SIVS,
EIVS and S-PDP [4] schemes are roughly equivalent.

To computation costs, we ignore the costs that the server and the user derive challenge
blocks indices ji and random coefficient j in the four schemes. We consider computation
costs in pro-processing phase, in generating response values phase and in verifying response
values phase. The computation costs of the three phases of the four schemes are listed in
Table 1. In Table 1, the operation symbols denote meaning: Hash: hash function operation;
Add: addition operation; Mult: multiplication operation; Exp: exponentiation operation; Div:
division operation; Pair: pairing operation.

Table 1. Computational Costs Comparison of Four Schemes
Computational costs S-PDP[4] Wang[13] SIVS EIVS

pro-processing 2nExp+nMult
+nHash

2nExp+nMult
+nHash

nExp+nMult
+1Hash+nAdd

nExp+nMult
+(n+1)Hash+nAdd

generating response
values

(c+1)Exp+2cMult
+cAdd+1Hash

cExp+2cMult
+cAdd

(c+1)Exp +2cMult
+cAdd

1Exp+cMult+cHash
+cAdd

verifying response
values

(c+2)Exp+ cMult +1Div
+(c+1)Hash

(c+1)Exp+(c+1)Mult
+cHash+2Pair

1Exp+(c+1)Mult
+cAdd

1Exp+1Mult
+cAdd

Table 1 indicates computation costs of S-PDP [4] and Wang [13] schemes are roughly
equivalent, and the computation costs of our SIVS and EIVS schemes are all lower than two
other schemes. Moreover, the computation costs of EIVS scheme are the lowest in four
schemes. To all operation, bilinear pairing and exponentiation operation are more time-
consuming than hash and add operation. EIVS scheme has more hash operation than three
other schemes, but the total exponentiation operation of EIVS scheme are less than three other
schemes. Therefore, EIVS scheme is more efficient than three other schemes. Now we
combine SIVS with EIVS scheme to check the integrity of cloud storage data. If the files are
stored in cloud for a long time, we uses SIVS scheme. But in short term, we uses EIVS scheme.

TELKOMNIKA ISSN: 2302-4046

A Double-Efficient Integrity Verification Scheme to Cloud Storage Data (Deng Hongyao)

7013

Therefore, at the same level of security, our schemes in overall performance are superior to two
other schemes and get double-efficient integrity verification guarantee.

6. Conclusion
In view of communication costs and computation costs of current integrity verification

schemes are too high, this paper proposes two integrity verification schemes SIVS and EIVS
based on Schnorr Signature. It combines SIVS with EIVS scheme to check the integrity of cloud
storage data. If the files need to be stored in cloud for a long time, SIVS scheme will be used to
verify the integrity of the file. But in short term, EIVS scheme will be used. Compared with other
similar schemes, our schemes has lower computation costs and communication costs and get
double-efficient integrity verification guarantee. How to apply the data recovery and privacy
protection technology to improve fault tolerance and security of cloud storage data? It will
become our emphasis in further research.

Acknowledgements
This work is partially surpported by Visiting Scholarship of State Key Laboratory of

Power Transmission Equipment & System Security and New Technology (Chongqing
University) under grant No. 2007DA10512711412.

References
[1] P Mell, T Grance. Reports on Computer Systems Technology. The NIST Definition of Cloud

Computing. 2011.
[2] Cloud storage, Wikipedia, http://en.wikipedia.org/wiki/Cloud_storage
[3] Y Deswarte, JJ Quisquater, A Sadane. Remote integrity checking. 6th working conference on integrity

and internal control in information systems (IICIS). 2003; 1-11.
[4] G Ateniese, R Burns, R Curtmola, et al. Provable data possession at untrusted stores. Proceedings of

the 14th ACM conference on computer and communications security. New York, USA. ACM 2007;
598-609.

[5] R Curtmola, O Khan, R Burns, et al. MR-PDP: Multiple-replica Provable data possession. 28th IEEE
ICDCS. 2008; 411-420.

[6] LX Chen. A homomorphic hashing based Provable Data Possession. Journal of Electronics &
Information Technology. 2011; 33(9): 2199-2204.

[7] Juels A, Kaliski, BS Kaliski. PORs: Proofs of Retrievability for large files. Proceedings of the 14th ACM
conference on Computer and communications security. ACM. 2007; 584-597.

[8] H Shacham, B Waters. Compact proofs of retrievability. Proceedings of the 14th International
Conference on the Theory and Application of Cryptology and Information Security. 2008; 90-107.

[9] CP Schnorr. Method for identifying subscribers and for generating and verifying electronic signature in
a data exchange system. U.S. 1991; Patent # 4995082.

[10] Song XL, Deng HY, et al. An Efficient Encryption and Verification Scheme for Preserving Electronic
Evidence in Cloud Computing. Journal of Information & Computational Science. 2013; 3: 911-922.

[11] Liu FF, Gu D, Lu HN, et al. Reducing computational and communication complexity for dynamic
provable data possession. China Communications. 2011; 6: 67-75

[12] Wang C, Wang Q, Ren K, et al. Ensuring data storage security in cloud computing. Proceedings of
IWQos'09. 2009: 1-9.

[13] Q Wang, C Wang, K Ren, et al. Enabling public auditability and data dynamics for storage security in
cloud computing. IEEE Transactions on Parallel and Distributed Systems. 2011; 22(5): 847-859.

