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Abstract 
Application mapping is one of the key problems of Network-on-Chip (NoC) design. It maps the 

cores of application to the processing elements of the NoC topology. This paper presents a novel 
approach for NoC application mapping, which uses adaptive genetic algorithm (AGA) in the mapping. The 
proposed approach adaptively varies the probabilities of crossover and mutation operators in genetic 
algorithm, aiming to reduce the overall communication cost of NoC. Experimental results show that the 
proposed approach decreases the communication cost by 3% to 7% on average, compared to the existing 
approach using Standard Genetic Algorithm (SGA). 

 
Keywords: network-on-chip, application mapping, adaptive genetic algorithm, genetic algorithm 

 
Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved. 

 
 

1. Introduction 
Network-on-Chip (NoC) is the design of modular and scalable communication 

architectures where various processing elements are connected to a router-based network 
using appropriate network interface [1-3]. Since application Mapping has direct effect on delay, 
power consumption and other performance of NoC, it is a very significant aspect of NoC design 
[4]. In its general form, the problem of NoC application mapping is an NP-hard problem [4]. 

Genetic Algorithm (GA), a stochastic search algorithm based on natural genetic 
operations provides a solution to the problem of NoC mapping. Sometimes the performance of 
Standard Genetic Algorithm (SGA) based NoC mapping cannot meet the need of practical work 
because the parameters of genetic operation are fixed values. Therefore, several adaptive 
genetic algorithms based on SGA are proposed. The Adaptive Genetic Algorithms (AGA) 
proposed by M. Srinivas and L. M. Patnak [5] is considered to be the most representative, and it 
realizes the twin goals of maintaining the diversity of population and sustaining the capacity of 
convergence with the use of adaptive probabilities of crossover and mutation. 

In this paper, we use AGA in the NoC application mapping. First, we extend the 
representation for chromosomes proposed by W. Zhou, et al [6] to a general situation in which 
the number of application cores is less than or equal to the number of processing elements 
(PEs) of the NoC topology. Second, our mapping approach reduces the communication cost 
with an improved adaptive genetic algorithm, F-AGA, which is proposed by X. Cheng [7], and it 
amends the expressions for crossover probability pc and mutation probability pm to solve the 
problem that pc and pm are zero for the solution with the max fitness. Experimental results 
show that our approach decreases the communication cost by 3% to 7% on average, compared 
to the approach using Standard Genetic Algorithm (SGA). 

The rest of this paper is organized as follows. Section 2 introduces the related work in 
NoC mapping and GA briefly. Section 3 presents the definitions used in this paper and 
describes our AGA based approach. Section 4 shows the experimental results, and Section 5 
summarizes our main contribution. 

 
 

2. Related Work 
The NoC application mapping techniques can be classified as dynamic mapping [8-10] 

and static mapping, depending on the time at which the cores of application are assigned to the 
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PEs of the NoC topology. Static mapping is generally recommended, as excess communication 
cost in dynamic mapping significantly affects overall performance of system [11]. The static 
mapping techniques mainly include Integer Linear Programming (ILP) [12], Branch-and-Bound 
(BB) [13], Particle Swarm Optimization (PSO) [14], Ant Colony optimization (ACO) [15], 
Simulated Annealing (SA) [16], Genetic Algorithm (GA), etc. The rest of this section will focus on 
the related work of GA for NoC mapping.  

Lei et al. propose a two-step Genetic Algorithm (GA) for NoC mapping, which reduces 
the overall execution time [17]. In the first step, the tasks are assigned onto different Intellectual 
Properties (IPs), assuming that the edge delays are constant and equal to the average value of 
the edge delays. In the second step, the IPs are mapped to the PEs of NoC, taking the actual 
edge delay based on the network traffic model, and the total system delay is minimized [11]. 
Zhou et al. propose a genetic algorithm based on a delay model for NoC mapping [6]. Zhou et 
al. also propose a representation for the chromosomes to ensure that the offspring will meet the 
constraint, a one-to-one constraint between IP cores and PEs. A pareto based multi-objective 
evolutionary computing technique is proposed by Ascia et al. [18], which optimizes performance 
and power consumption of NoC. Jena et al. propose MGAP, a genetic algorithm based 
optimization technique, which minimizes the power consumption and maximizes the throughput 
by reducing the number of switches in the communication path between cores [19]. 

The major drawback of the genetic algorithms is the slow rate of convergence. It often 
requires the GA to evolve a large number of generations to converge to a solution. The best 
solution at the end is taken to be the solution of the mapping problem. To accelerate the rate of 
convergence, the mutation rate can be increased. However, it mostly converges to local best 
solutions, rather than finding the global best [11]. AGA has better capability of locating the 
global optimum than SGA. However, we have not found any literature that has used AGA in 
NoC mapping. 

 
 
3. Technique 

In this section, we start with the definitions used in this paper. Then we describe the 
adaptive genetic algorithm for mesh-based NoC mapping. The representation of population 
(chromosomes) and the expressions of probability are very important aspects of AGA. We 
introduce them separately. 

Definition 1: Application Characteristic Graph ACG (V, E) is a directed graph, where 
each vertex ci ∈ V represents an IP core and each edge ei,j ∈ E represents the communication 
bandwidth between a source core (ci) and a destination core (cj). Each ei,j is tagged with vij 
which represents the communication volume from ci to cj. 

Definition 2: NoC Architecture Graph NAG (R, C) is a directed graph, where each 
vertex ri ∈ R, represents a PE. Each directed edge ci,j ∈ C represents a physical unidirectional 
channel which connects an output port of ri to an input port of rj. 

Definition 3: Virtual IP Core (VIC) is an IP core that does not exist in ACG. The 
communication volume from a VIC to an IP core is always zero, as is the communication from 
an IP core to a VIC. 

Definition 4: Extended Application Characteristic Graph EACG (C, E) is a directed 
graph, where each vertex ci ∈ V represents an IP core or a VIC and each edge ei,j ∈ E 
represents the communication bandwidth between a source core (ci) and a destination core (cj). 
Each ei,j is tagged with vij which represents the communication volume from ci to cj. 
 
3.1. Population Representation 

NoC mapping has a one-to-one constraint between IP cores and PEs in NoC 
application mapping, which means that different IP cores cannot be mapped to the same PE 
and different PEs cannot map the same IP core. Thus, some offspring will violate the constraint 
if they are generated by parents randomly. In order to overcome this problem, Zhou et al. [6] 
has proposed a convenient population representation scheme. Using this scheme, the offspring 
will satisfy the constraint as long as the parents do. However, the situation in which the number 
of IP cores is less than the number of PEs has not been considered in this scheme. 

An extended population representation scheme is suggested here. This scheme is 
based on the scheme in [6], and is able to represent the situation in which the number of IP 
cores is less than the number of PEs. The mapped 2D-mesh NoC is represented by one-
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dimensional array using a left to right scan performed in a top-down fashion. The chromosome 
is an integer array, and the value at the ith position denotes the mapping of the ith IP core or VIC. 
For the value of the ith position an integer between 1 and i is allowed.  

Next, we illustrate the decoding procedure of the chromosome structure with the help 
of an example. Figure 1(a) shows the ACG of an application with 7 IP cores, and Figure 1(b) 
shows the NAG of a 3x3 2D-mesh NoC. 

 
 

 
(a) ACG (b) NAG 

 
Figure 1. ACG with 7 IP Cores and 3x3 2D-mesh NAG 

 
 

The first step is to construct EACG from ACG. In this example the number of PEs 
minus the number of IP cores is 2. Thus, two VIC, ‘h’ and ‘I’, should be added to the EACG. 
Figure 2 shows the EACG. 

 
 

 
 

Figure 2. EACG 
 
 

Then, for a chromosome structure (1, 2, 2, 4, 5, 4, 7, 1, 3), the first integer is applied to 
map IP core ‘a’; the second integer is applied to map IP core ‘b’; and so on. Clearly, the last two 
integers are applied to map the VIC ‘h’ and ‘i’. The value of the first position is ‘1’, and all 
solutions will have a value ‘1’ into the first position. The second integer is applied to map ‘b’, and 
there are two situations: value ‘1’ means ‘b’ is before ‘a’ and value ‘2’ means ‘b’ is after ‘a’. The 
second integer in the chromosome structure is ‘2’. So [a, b] is obtained. Similarly, the third 
integer is applied to map ‘c’, and there are three situations: value ‘1’ means ‘c’ is before ‘a’, 
value ‘2’ means ‘c’ is between ‘a’ and ‘b’ and value ‘3’ means ‘c’ is after ‘b’. The third integer in 
the sample chromosome structure is ‘2’. So [a, c, b] is obtained. Continuing in this fashion, the 
following permutation of the nine alphabets [h, a, i, c, b, f, d, e, g] is obtained. Cores are placed 
in a 3x3 2D-mesh NoC according to this permutation as shown in Figure 3 (a). Finally, VICs ‘h’ 
and ‘i’ should be removed from the core placement. Then the final core placement is obtained in 
Figure 3 (b). 

 
 

  
(a) Core placement (b) The final core placement 

Figure 3. Core Placement of a Sample Chromosome Structure 
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Note that this extended population representation scheme can easily deal with the 
above constraint condition even if the number of IP cores is less than the number of PEs. 

 
3.2. Expressions of Probability 

In the AGA proposed by M. Srinivas [5] the probabilities of crossover and mutation are 
adjusted by the expression (1) and (2). 

 

  (1) 
 

  (2) 
 
Where Pc is the probability of crossover; Pm is the probability of mutation; is the 

maximal fitness;  is the average fitness;  is the bigger fitness value between two parents;  is the 
fitness value of the mutated individual; k1, k2, k3 and k4 are constants between 0 and 1. 

The AGA proposed in [5] is more propitious to the probability adjustment of the later 
period evolution, because the probability of crossover and mutation are zero for the best 
solution. Here we introduce an improved adaptive genetic algorithm F-AGA [7], and the 
probability expressions can be described as 

 

  (3) 
 

  (4) 
 
Where Pc is the probability of crossover; Pc_max is the maximal crossover probability; 

Pc_min is the minimal crossover probability; Pm is the probability of mutation; Pm_max is the 
maximal mutation probability; Pm_min is the minimal mutation probability; is the maximal fitness;  
is the average fitness;  is the bigger fitness value between two parents;  is the fitness value of 
the mutated individual. The parameters are set as Pc_max = 0.9, Pc_min = 0.6, Pm_max = 0.2, Pm_min 
= 0.01. 

 
3.3. The Other Aspects of the Algorithm 

a) Initial population 
The initial population is generated randomly. Note that the integer value at the ith 

position of each individual in the initial population must between 1 and i. 
b) Fitness function 
The goal of this paper is to reduce the communication cost (CommCost) measured by 

 

 (5) 
 

Where  is the Manhattan distance between source core ‘i’ and destination core ‘j’, 
and the distance between two adjacent PEs is one hop.  is the requirement of 
communication bandwidth from source core ‘i’ to destination core ‘j’. 

c) Reproduction 
Tournament selection is used in this paper. Tournament selection randomly samples k 

individuals from parent population, and then selects the best one into the mating pool. In this 
paper k is set to 2. 
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d) Crossover 
Our experiments show that the uniform crossover is better than single-point crossover 

and multi-point crossover. So we use uniform crossover in this paper. After calculating crossover 
probability, a uniform crossover is done with the new crossover probability. 

e) Mutation 
After calculating mutation probability a mutation is done by selecting a position ‘i’ at the 

representation of chromosome with the new crossover probability, and the integer value 
assigned at ith position is a random integer between 1 and i. 

f) Elite-preservation strategy 
In order to speed up the convergence rate of AGA and ensure that the offspring is 

always better than the parent, elite-preservation strategy is used in this paper. Elite-preservation 
strategy ensures the best individual always survives to be an individual of the next generation. 
Then, the best individual will replace the worst individual of next generation in the AGA 
proposed in this paper. 

g) Terminal criterion 
The termination criterion is set to be 500 generations. 

 
 
4. Experimental Results 

To evaluate the performance of the proposed AGA based NoC application mapping 
approach, we implemented the AGA and the SGA in C++. The crossover probability and the 
mutation probability of SGA are fixed as Pc = 0.9 and Pm = 0.05. 

We generate 6 ACGs with TGFF [20] randomly, and generate 6 NAGs for the ACGs. 
The number of cores and the number of PEs of the 6 test cases are shown in Table 1. 

 
 

Table 1. The 6 Mapping Cases 
Cases Number of IP cores Number of PEs 

1 60 8*8 

2 46 7*7 

3 20 5*4 

4 19 8*8 

5 44 7*7 

6 19 4*5 

 
 
We made 100 simulation runs for each case in Table 1. Considering the randomization 

effect of SGA and AGA, the algorithms were executed for 500 generations in each simulation 
run.  

Figure 4 shows the communication costs at each generation of the genetic algorithms 
for the test case 1. Each point in the figure represents the average value of 100 simulation runs. 
From the figure, we can see that the AGA outperforms the SGA, and the SGA tends to get stuck 
at a local optimum at point A while the AGA does until point B. 

 
 

 
Figure 4. Variations of the Communication Costs (test case 1) 
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Table 2 shows the final result of the mapping cases in Table 1. As we can see from 
Table 2, after 500 generations, the AGA based approach decreases the communication cost by 
3% to 7% on average, compared to the SGA based approach. 

 
 

Table 2. Communication Costs of the Final Mappings 
Cases SGA AGA AGA/SGA 

1 3645.63 3416.16 0.93705615 

2 4025.68 3824.88 0.95012023 

3 994.962 978.439 0.98339334 

4 1812.01 1769.11 0.97632463 

5 2828.26 2726.67 0.96408039 

6 1671.73 1649.82 0.98689382 

 
 
5. Conclusion 

In this paper an adaptive genetic algorithm (AGA) based approach for NoC application 
mapping is proposed. We present a population representation scheme which can easily deal 
with the constraint condition in NoC application mapping even if the number of IP cores is less 
than the number of PEs. The proposed approach adaptively varies the probabilities of crossover 
and mutation operators. Our experiments show that the AGA enhances the capability of 
premature convergence prevention and produces lower communication cost than SGA. 

The proposed approach only considers the communication cost. In future work, the 
approach will be extended by considering the other aspects of NoC such as the network delay. 
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