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Abstract 
In the past half-century, scaling has been used to improve semiconductor devices performance. 

In this paper, we study the effects of scaling on SiGe(C) heterojunction bipolar transistors (HBTs) 
performances i.e. cutoff frequency (fT), maximum frequency of oscillation (fmax) and gate delay (τg). The 
SiGe HBT scaling models are developed from more than twenty years accumulated reported data. The 
results show that the peak cutoff frequency shows an increasing trend with emitter width scaling with a 
factor of ~WE

-0.719, the peak maximum frequency of oscillation shows an increasing trend with emitter width 
scaling with a factor of ~WE

-0.723 and the gate delay shows a decreasing trend with emitter width scaling 
with a factor of ~WE

0.778.  
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1. Introduction 

Semiconductor devices have continuously been scaled down in size over the past few 
decades. Smaller devices are needed for several reasons. The main reason to make transistors 
smaller is to add more devices in a given chip area. This results in chips with more functionality 
in a smaller area. Smaller ICs allow more chips per wafer, reducing the chip price. It is also 
expected that smaller devices has better performance. The number of transistors per chip has 
been doubled every 2 years and was first obserbed by Gordon Moore in 1965 and is commonly 
reffered as Moore’s law. For example, the number of transistors in Intel microprocessors has 
doubled every 26 months. The 4004 processor introduced in 1971 has 2300 transistors while 
the Xeon processor introduced in 2007 has 820 million transistors [1].   

Figure 1 and 2 show the performance trends of Si-based bipolar transistors, which 
include SiGe and SiGeC HBTs. The data points are accumulated for more than two decades 
since early 1980s to 2000s [2]. The cutoff frequency trend in Figure 1 shows that in two 
decades, the cutoff frequency is increased by a factor of 30, from less than 10 GHz to more 
than 350 GHz. The trend of the gate delay in Figure 2 shows that over the past two decades the 
gate delay has been reduced by a factor of 1/25, from more than 100 ps to less than 4 ps. The 
Si-based bipolar transistors are suitable for RF and mixed-signal applications, which need high 
device speed but do not require device density as high as the digital applications. These 
performance trends are the evident results of constant improvement efforts, ultimately by 
vertical and lateral scaling, supported by material and structural innovations. 

Over the past half-century, scaling has been the key to the improvement of 
semiconductor device performance. Scaling has worked for all types of transistors, including the 
SiGe dan SiGeC heterojunction bipolar transistors (HBTs). SiGe HBTs have SiGe as the base 
material which have smaller bandgap than that of Si. The SiGe base gives new degrees of 
freedom for the design of SiGe HBTs and allows much higher values of cutoff frequency to be 
achieved than in conventional silicon BJTs. The improvement in SiGe HBTs performance is 
shown by the reported SiGe HBTs with cutoff frequency exceeding 350 GHz [3].  

Scaling rules are design rules which must be followed while scaling down geometry of 
semiconductor devices and interconnect lines. They provide device design parameters and 
performance parameters for a given saling factor based on certain requirements and 
constraints. Scaling rules for CMOS devices have been extensively developed and used as a 
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tool for CMOS performance improvement. Even though scaling rules for bipolar transistors have 
not been extensively used in bipolar transistor performance improvement, there have been 
several efforts to developed scaling rules for bipolar transistor i.e. by Solomon and Tang [4], 
Bellaouar, Rosseel and Raje [3]. While there are rules to estimate the gate delay, as far as our 
knowledge there are no direct scaling rules to estimate the cutoff frequency and maximum 
frequency of oscillation. In this work, the scaling models to estimate the cutoff frequency (fT), 
maximum frequency of oscillation (fmax) and gate delay (τg) for SiGe(C)-heterojunction bipolar 
transistors is developed based on published data over the span of of two decades. 

 
 

  
 

Figure 1. The trend of cutoff frequency (fT) for 
Si-based transistors [3] 

Figure 2. The trend of gate delay (τg) for Si-
based transistors [3] 

 
 
2. State of the Art of Bipolar Transistor Scaling Rules and Scaling Model Development 
2.1. State of the Art Bipolar Transistor Scaling Rules 

A theory for scaling bipolar transistors for ECL circuits has been developed by Solomon 
and Tang since 1979 and is shown in Table 1 [4]. The basic concept in this scaling theory is to 
reduce the dominant resistance and capacitance components in a coordinated manner so that 
the dominant delay components are reduced proportionally as the horizontal dimensions of the 
transistor are scaled down. In this way, if a transistor is optinlized for a given circuit design point 
before scaling, the transistor remains more or less optimized after scaling. 
 
 

Table 1. Solomon and Tang scaling rules  
Parameter Scaling Rules 

Feature size or emitter-stripe width WE 1/κ 

Base doping NB κ 1.6 

Base width WB 1/κ0.8 

Collector doping NC κ 2 

Collector current density JC κ 2 

Gate delay τg 1/κ 

Scaling factor κ > 1 
 
 

 The others bipolar transistor scaling rules have been developed by Bellaouar, Rosseel 
and Raje, however despite the different constraints and approaches assumed, overall trends 
suggested bu these scaling rules for key bipolar parameters are not significantly far apart [3]. 
For example, when emitter stripe width is scaled by 1/κ, the gate delay is expected to decrease 
by 1/κ. 
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2.2. Data Collection and Mathematical Model Development 
Before the scaling models for SiGe(C) HBTs are developed, the relation of lateral 

emitter width WE to the cutoff frequency (fT), maximum frequency of oscillation (fmax) and gate 
delay (τg) data are collected from secondary sources, i.e. from published papers over the span 
of two decades, from 1989 – 2010 [5] – [67]. The scaling models are assumed to have a simple 
power equation, for example the cutoff frequency (fT) 

 
B

ET AWf           (1) 

 
Linearization of Equation (1) yields: 
 

 ET WBAf logloglog         (2) 

 
Least square linear regression is then applied for fitting the best line to data, and yields: 
 

     iTiE fBWAn ,, logloglog       (3) 

 

    iTiEiEiE fogWlBWAW ,,
2
,, loglogloglog      (4) 

 
 
3. Results and Analysis 

The correlation between the peak cutoff frequencies (fT) and emitter stripe widths (WE) 
are presented in Figure 3, which shows compiled published data obtained from SiGe and SiGeC 
HBTs over the past two decades. The peak cutoff frequency shows an increasing trend with 
emitter width scaling, with a factor of ~WE-0.719. It should be noted, though, that the data points 
in the plot are spread and the correlation factor (R2) is 0.49, which means there are strong 
relationship beetwen fT and WE.  

Figure 4 shows the trend of peak maximum frequency of oscillation fmax over the emitter 
width, with correlation factor (R2) 0.58, which is better correlated than the cutoff frequency trend. 
A scaling factor of ~WE

-0.723 is extracted, which is similar to cutoff frequency trend. Contrary to 
our expectation base on our previous results [69], the peak cutoff frequency and the peak 
maximum frequency of oscillation have similar increasing trend with emitter width scaling. 

The correlation between the gate delay and emitter width are presented in Figure 5, 
which exhibits a decreasing trend with emitter width scaling, with a factor of ~WE

0.7782 and the 
correlation factor is 0.58. The trend is lower than expected from scaling rules i.e. 1/κ, however  
the trend is slightly higher than compared to Rieh with ~WE

0.725 [3]. 
 
 

 
 

Figure 3.  Scaling trend for peak cutoff frequency (fT); Trend equations over WE are also shown, 
along with correlation factor R 
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Figure 4.  Scaling trend for peak maximum frequency of oscillation fmax 
 
 

 
 

Figure 4. Scaling trend for the gate delay τg 
 
 
4. Conclusion 

1) It is shown that lateral scaling has beneficial effects on device performances such 
as cutoff frequency, maximum frequency of oscillation and gate delay. 

2) The peak cutoff frequency shows an increasing trend with emitter width scaling with 
a factor of ~WE

-0.719.  
3) The peak maximum frequency of oscillation shows an increasing trend with emitter 

width scaling with a factor of ~WE
-0.723.  

4) The gate delay shows a decreasing trend with emitter width scaling with a factor of 
~WE

0.778. 
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