Independent Number and Dominating Number of (n, k)Star Graphs

Yunchao Wei*, Fuguang Chen, Hongxian Zhu
College of Information Technology, Shanghai Ocean University, Shanghai, 201306, P. R. China
*Corresponding author, e-mail: ycwei@shou.edu.cn

Abstract

In Graph Theory, independent number and, dominating number are three of the important parameters to measure the resilience of graphs, respectively denoted by $\alpha(G)$ and $\gamma(G)$ for a graph G . But predecessors have proved that computing them are very hard. So computing $\alpha(G)$ and $\gamma(G)$ of some particular known graphs is extremely valuable. In this paper, we determine $\alpha(G)$ and $\gamma(G)$ of (n, k) -star graphs, denoted by $S_{n, k}$, followed by some relative conclusions of n-star, denoted by S_{n} as the isomorphism of $S_{n, n-1}$. In addition, our method giving dominating set of $S_{n, k}$ is more easily understood than [7], which presented a broadcast algorithm to determine dominating set of $S_{n, k}$.

Keywords: (n, k)-star graph, independent number, dominating number

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

It is widely known that independent number, dominating number and bondage number are the important parameters to measure the resilience of graphs. Next, we see their conception:

Definition 1.1 Let G be a graph, and I be a nonempty subset of $V(G)$, then I is one independent set of G if any two nodes of I is not adjacent in G. Moreover, we call that $|I|$ is independent number of G if $|I|$ is maximum in all independent sets of G, denoted by $\alpha(G)$.

Definition 1.2 Let G be a graph, and S be a nonempty subset of $V(G)$, then S is one dominating set of G if all nodes of G is either in S, or adjacent to a node of S. Moreover, we call that $|S|$ is dominating number of G if $|S|$ is minimum in all dominating sets of G, denoted by $\gamma(G)$.

Clearly, a maximum independent set of graph G is a dominating set of G by Definition 1.1 and Definition 1.2, so it is easy to get $\gamma(G) \leq \alpha(G)$.

In a graph, predecessors have shown that computing $\alpha(G)$ and $\gamma(G)$ are extremely difficult. So computing $\alpha(G)$ and $\gamma(G)$ of some particular known graphs is very valuable. For example, the (n, k) -star graphs was first proposed in 1995 by W.K Chiang et al [1]. Because of good topological properties of $S_{n, k}$, its many properties have been researched such as diameter and connectivity [1] [8], pancyclicity [2], $k_{s}{ }^{(1)}(G)$ and $k_{s}{ }^{(2)}(G)$ [3] [5] [6], fault hamiltonicity and fault hamiltonicity connectivity [4] and the orthers issue [9][10]. In this paper,
we determine $\alpha(G)$ and $\gamma(G)$ of (n, k)-star graphs, so that can get $\alpha\left(S_{n}\right)$ and $\gamma\left(S_{n}\right)$ and of n-star, denoted by S_{n}.

2. Preliminaries

For given integers n and k, where $1 \leq k \leq n-1$, let $J_{n}=\{1,2, \ldots ., n\}$ and let $P(n, k)$ be the set of k-permutations on J_{n} for $1 \leq k \leq n-1$, that is, $P(n, k)=\{$ $\left.p_{1} p_{2} \ldots p_{k}: p_{i} \in J_{n}, p_{i} \neq p_{j}, 1 \leq i \neq j \leq k\right\}$.

Definition 2.1 The (n, k)-star graph, denoted by $S_{n, k}$, is an undirected graph with vertex-set $P(n, k)$. The adjacency is defined as follows: a vertex $p_{1} p_{2} \ldots p_{i} \ldots p_{k}$ is adjacent to a vertex
(1) $p_{1} p_{2} \cdots p_{i-1} p_{1} p_{i+1} \cdots p_{k}$, where $2 \leq i \leq k\left(\operatorname{swap} p_{1}\right.$ with $\left.p_{i}\right)$.
(2) $x p_{2} \ldots p_{k}$, where $x \in J_{n}-\left\{p_{i}: 1 \leq i \leq k\right\}$ (replace p_{1} by x).

Figure 1 shows a (4,2)-star graph $S_{4,2}$.

Figure 1. The structure of a (4,2)-star graph $S_{4,2}$

The edges of type (1) are referred to as i-edges ($2 \leq i \leq k$), and the edges of type (2) are referred to as 1-edge. The vertices of type (1) are referred to as swap-adjacent vertices, and the vertices of type (2) are referred to as unswap-adjacent vertices. We also call i-edge as swap-edge, and call 1-edges as unswap-edge. Clearly, every vertex in $S_{n, k}$ has $(k-1)$ swapadjacent vertices and ($n-k$) unswap-adjacent vertices. Usually, if $v=p_{1} p_{2} \ldots p_{k}$ is a vertex in $S_{n, k}$, we call that p_{i} is the i-th bit for each $i=1,2, \ldots k$.

By Definition 2.1, we know $S_{n, n-1} \cong S_{n}$ and $S_{n, 1} \cong K_{n}$ where S_{n} is n-star graph and K_{n} is complete graph with order n. So $S_{n, k}$ is a generalization of S_{n}. It has been shown by Chiang and Chen [1] that S_{n} is an $(n-1)$-regular, $(n-1)$-connected vertex-transitive graph with $n!/(n-k)!$ vertices.

Lemma 2.2 For any $\alpha \in P(n, k-1)(k \geq 2)$, let $V_{\alpha}=\left\{p \alpha: p \in J_{n} \backslash \alpha\right\}$. Then the subgraph of $S_{n, k}$ induced by V_{α} is a complete graph K_{n-k+1}, denoted by K_{n-k+1}^{α}.

Proof. For any two vertices $p \alpha$ and $q \alpha$ in V_{α} with $p \neq q$, by the condition (2) of definition 2.1, $p \alpha$ and $q \alpha$ are linked in $S_{n, k}$ by an unswap-edge. Thus, the subgraph of $S_{n, k}$ induced by V_{α} is a complete graph $K_{n-k+1} \cdot \square$

Let $|P(n, k-1)|=p(n, k-1)$. The vertex-set $P(n, k)$ of $S_{n, k}$ can be decomposed into $p(n, k-1)$ subsets, each of which induces a complete graph by Lemma 2.2. It is clear that, for any two distinct elements x and y in $P(n, k)$, if they are in different complete subgraphs K_{n-k+1}^{α} and $K_{n-k+1}^{\beta}(\alpha \neq \beta)$, then there is at most one swap-edge between x and y in $S_{n, k}$, which is an i-edge if and only if α and β differ only in the i-th bit. Thus, we have the following conclusion.

Lemma 2.3 The vertex-set of $S_{n, k}$ can be partitioned into $|P(n, k-1)|$ subsets, each of which induces a complete graph of order $(n-k+1)$. Furthermore, there is at most one swapedge between any two complete graphs.

Let $S_{n, k}^{i}$ denote a subgraph of $S_{n, k}$ induced by all vertices with the last symbol i for some $i \in J_{n}$.

Lemma 2.4 (Chiang and Chen [1]) $S_{n, k}$ can be decomposed into n subgraphs $S_{n-1, k-1}^{i}$, which is isomorphic to $S_{n-1, k-1}$, for each $i \in J_{n}$. Moreover, there are $\frac{(n-2)!}{(n-k)!} k$-edges between $S_{n-1, k-1}^{i}$ and $S_{n-1, k-1}^{j}$, which forms a matching between them, for any $i, j \in J_{n}$ with $i \neq j$.

Corollary 2.5 An $S_{n, 2}$ can be decomposed into n subgraphs $S_{n-1,1}^{i}$, which is isomorphic to complete K_{n-1}, for each $i \in J_{n}$.

3. Independent number of $S_{n, k}$

In this section, we mainly determine the independent number of $S_{n, k}$. Since $S_{n, 1} \cong K_{n}$, we only consider the case $k \geq 2$, in the following discussion.

Lemma $3.1 \alpha\left(S_{n, k}\right) \leq \frac{n!}{(n-k+1)!}$ for $2 \leq k \leq n-1$.
Proof. Assume that $I_{k}\left(\subset V\left(S_{n, k}\right)\right)$ is a maximum independent set of $S_{n, k}$, then $\left|I_{k}\right|=\alpha\left(S_{n, k}\right)$ by definition 1.1. If $\alpha\left(S_{n, k}\right)>\frac{n!}{(n-k+1)!}$, then there are at least two nodes of I_{k}, which are from one $K_{n-k+1}^{\alpha}(\alpha \in P(n, k-1))$ since $S_{n, k}$ can be decomposed into different $p(n, k-1)\left(=\frac{n!}{(n-k+1)!}\right)$ complete graphs $K_{n-k+1}^{\alpha}(\alpha \in P(n, k-1))$ by Lemma 2.3, so that the two nodes is adjacent. Thus, it is contrary to definition 1.1.

Lemma $3.2 \alpha\left(S_{n, 2}\right)=n$ for $n \geq 3$.

Proof. Let $I_{2}\left(\subset V\left(S_{n, 2}\right)\right)$ be a maximum independent set of $S_{n, 2}$, then $\left|I_{2}\right|=\alpha\left(S_{n, 2}\right)$ by definition 1.1. By Lemma 3.1, we get $\left|I_{2}\right|=\alpha\left(S_{n, 2}\right)$. Thus, Lemma 3.2 can be proved if we can construct an I_{2}, so that $\left|I_{2}\right|=n$.

By Lemma 2.5, let $I_{2}=\{12,23, \cdots,(n-1) n, n 1\}$, then each vertex of I_{2} is from different complete $K_{n-1}^{\alpha}(\alpha \in P(n, 1))$, clearly, any two nodes of I_{2} is not adjacent in $S_{n, 2}$ by Definition 2.1, and $\left|I_{2}\right|=n$.

Theorem $3.3 \alpha\left(S_{n, k}\right)=\frac{n!}{(n-k+1)!}$ for $2 \leq k \leq n-1$.
Proof. By Lemma 3.1, we get $\left|I_{k}\right|=\alpha\left(S_{n, k}\right) \leq \frac{n!}{(n-k+1)!}$. Thus, Theorem 3.3 can be shown if we can construct an I_{k}, so that $\left|I_{k}\right|=\frac{n!}{(n-k+1)!}$.

Let $I_{k}^{(i, j)}$ be a vertex-set, which includes the vertices of I_{k} if the vertices don't include element i, and $I_{k}^{(i, j)}$ includes the vertices of I_{k} if the vertices include element i but swap i with j.

Step 1: In $S_{n-k+2,2}$, by Lemma 3.2, let $I_{2}=\{12,23, \cdots,(n-k+1)(n-k+2),(n-k+2) 1\}$. Clearly, $\left|I_{2}\right|=n-k+2$;

Step2: In $S_{n-k+3,3}$, let $I_{3(n-k+3)}=\left\{\beta(n-k+3) \mid \beta \in I_{2}\right\}$ and $I_{3 x}=\left\{\beta x \mid x \in J_{n-k+2}, \beta \in\right.$ $\left.I_{2}^{(x, n-k+3)}\right\}$. Now, we let $I_{3}=\sum_{x \in J_{n-k+3}} I_{3 x}$, clearly, $\left|I_{3 x}\right|=(n-k+3)(n-k+2) ; \cdots$

Step k: In $S_{n-k+k, k}$, let $I_{k(n-k+k)}=\left\{(n-k+k) \mid \beta \in I_{k-1}\right\}$ and $\left|I_{k x}\right|=\left\{\beta x \mid x \in J_{n-k+(k-1)}\right.$, $\left.\beta \in I_{k-1}^{(x, n-k+k)}\right\}$. Now, we let $I_{k}=\sum_{x \in J_{n-k+k}} I_{k x}$, clearly, $\left|I_{k}\right|=n(n-1) \cdots(n-k+3)(n-k$ $+2)=\frac{n!}{(n-k+1)!}$.

In step $i\left(i \in J_{k}\right)$, it is easy to verify that any two vertices of I_{i} are not adjacent in $S_{n-k+i, i}$ by the rules of our construction.

Corollary 3.4 In n-star graph $S_{n}, \alpha\left(S_{n}\right)=\frac{n!}{2}$ for $n \geq 2$.

4. Dominating number of $S_{n, k}$

In this section, we mainly determine the dominating number of $S_{n, k}$. Similarly, since $S_{n, 1} \cong K_{n}$, we only consider the case $k \geq 2$ in the following discussion.

Lemma $4.1 \gamma\left(S_{n, k}\right) \geq \frac{(n-1)!}{(n-k)!}$ for $2 \leq k \leq n-1$.

Proof. Let $S\left(\subset V\left(S_{n, k}\right)\right)$ be a minimum dominating set of $S_{n, k}$, then $|S|=\gamma\left(S_{n, k}\right)$ by definition 1.2. By definition 2.1, we have known that $S_{n, k}$ is a ($n-1$)-regular graph, so each vertex of S can at most dominate $(n-1)$ vertices in $S_{n, k}-S$. If $\gamma(S n, k) \leq \frac{(n-1)!}{(n-k)!}-1$ then S can at most dominate $\left[\frac{(n-1)!}{(n-k)!}-1\right](n-1)$ vertices in $S_{n, k}-S$. Thus,

$$
\begin{aligned}
|S|+\left|V\left(S_{n, k}-S\right)\right| & \leq\left[\frac{(n-1)!}{(n-k)!}-1\right](n-1)+\frac{(n-1)!}{(n-k)!}-1 \\
& =\frac{n!}{(n-k)!}-n<\frac{n!}{(n-k)!}=\left|V\left(S_{n, k}\right)\right|
\end{aligned}
$$

It is contrary to the definition of dominating number. \square
Theorem $4.2 \gamma\left(S_{n, k}\right)=\frac{(n-1)!}{(n-k)!}$ for $2 \leq k \leq n-1$.
Proof. By Lemma 4.1, we have shown $|S|=\gamma\left(S_{n, k}\right) \geq \frac{(n-1)!}{(n-k)!}$. Thus, by definition 1.2, Theorem 4.2 can be proved if we can construct a dominating set S, so that $|S|=\frac{(n-1)!}{(n-k)!}$.

We now split $V\left(S_{n, k}\right)$ into 3 vertex-subsets: $V_{n}=\{\mathrm{n} \alpha \mid \alpha \in P(n-1, k-1)\}, V_{n}^{\prime}=$ $\{\alpha \mid \alpha \in P(n-1, k)\}$ and $V_{n}^{\prime \prime}=\left\{p_{1} p_{2} \ldots p_{a-1} n p_{a+1} \ldots p_{k} \mid p_{i} \in J_{n-1}, a \geq 2\right\}$. It is easy to verify that $V_{\mathrm{n}}, V_{n}^{\prime}$ and $V_{n}^{\prime \prime}$ have no intersection, and $\left|V_{\mathrm{n}}\right|+\left|V_{\mathrm{n}}^{\prime}\right|+\left|V_{n}^{\prime \prime}\right|=\left|V\left(S_{n, k}\right)\right|=\frac{n!}{(n-k)!}$ since $\left|V_{\mathrm{n}}\right|=\frac{(\mathrm{n}-1)!}{(\mathrm{n}-\mathrm{k})!},\left|V_{n}^{\prime}\right|=\frac{(n-1)!}{(n-k-1)!}$ and $\left|V_{\mathrm{n}}^{\prime \prime}\right|=\frac{(n-1)!}{(n-k)!}(k-1)$.

Let $p_{1} p_{2} \ldots p_{k}$ be any one vertex of V_{n}, then all neighboring-edges of $\mathrm{p}_{1} p_{2} \ldots p_{k}$ must have one unswap-edge connected to $n p_{2} \ldots p_{k}$ of V_{n}

Let $p_{1} p_{2} \ldots p_{a-1} n p_{a+1} \ldots p_{k}$ be any one vertex of $V_{n}^{\prime \prime}$, then all neighboring-edges of p_{1} $p_{2} \ldots p_{a-1} n p_{a+1} \ldots p_{k}$ must have one swap-edge connected to $n p_{2} p_{a-1} p_{1} p_{a+1} \ldots p_{k}$ of V_{n}.

Thus, we can let $V_{\mathrm{n}}=S$, and $\left|V_{\mathrm{n}}\right|=\frac{(\mathrm{n}-1)!}{(n-k)!}$.
Corollary 4.3 In n-star graph $S_{n}, \gamma\left(S_{n}\right)=(n-1)$!.
Corollary 4.4 If let $V_{x}=\left\{x p_{1} p_{2} \ldots p_{k-1} \mid p_{j} \in J_{n} \backslash x\right\}\left(x \in J_{n}\right)$, then each V_{x} is a minimum dominating set of $S_{n, k}$ for $x=1,2, \ldots, n$.

Corollary 4.5 If S is a minimum dominating set of $S_{n, k}$, then any two vertices of S aren't adjacent in $S_{n, k}$, and any two neighboring-vertices of S aren't common.

Proof. Let v_{1} and v_{2} be any two vertices of S, if v_{1} and v_{2} are adjacent in $S_{n, k}$, then v_{1} and v_{2} can at most dominate $2 n-4$ vertices of $S_{n, k}-S$ since either v_{1} or v_{2} only dominate $n-2$ vertices of $S_{n, k}-S$. Thus, we can get that S can at most dominate
$(|S|-2)(n-1)+2 n-4$ vertices of $\quad S_{n, k}-S, \quad$ and \quad can \quad get $\quad|S|+(|S|-2)(n-1)$ $+2 n-4=n|S|-2=\left|V\left(S_{n, k}\right)\right|-2<\left|V\left(S_{n, k}\right)\right|$, a contradiction.

If there exist two neighboring-vertices of S who are common, then S can at most dominate $|S|(n-1)-1 \quad$ vertices of $\quad S_{n, k}-S$ Therefore, we have $|S|+|S|(n-1)-1=$ $\left|V\left(S_{n, k}\right)\right|-1<\left|V\left(S_{n, k}\right)\right|$, a contradiction. \square

In any case, in Graph Theory, it is rather difficult to compute independent number and dominating number of the graphs. Up to now, the conclusions in this respect are confined only to a few specific graphs such as cube, hypercube and so on. Thus, the paper is very valuable since it solves independent number and dominating number of (n, k)-star graphs and n-star graphs.

Acknowledgements

The work was supported by "973" Program of China (No. 2012CB316200).

References

[1] WK Chiang, RJ Chen. The (n, k) -star gragh: A generalized star graph. Information Processing Letters. 1995; 56(5): 259-264.
[2] Y Chen, D Duhua, T Yea, J Fu. Weak-vertex pancyclicity of (n, k) -star graghs. Theoretical Computer Science. 2008; 396: 191-199.
[3] WH Yang, HZ Li, XF Gou. A kind of conditional fault tolerance of (n, k) -star graghs. Information Processing Letters. 2010; 110: 1007-1011.
[4] HC Hsu, YL Hsieh, JM Tan, LH Hsu. Fault hamiltonicity and fault hamiltonicity connectivity of the (n, k) -star graghs. Networks. 2003; 42: 189-201.
[5] SC Hu, CB Yang. Fault tolerance on star graphs. In Proceedings of the First International Symposium on Parallel Algorithms/Architecture Synthesis. Aizu. 1995: 12:176-182, 1995.
[6] M Wan, Z Zhang. A kind of conditional vertex connectivity of star graphs. Applied Mathematics Letters. 2009; 22: 264-267.
[7] L He, K Qiu and ZZ Shen. Neighbourhood Broadcasting and Broadcasting on the (n, k) -Star Graph. In Proceedings of the 8th international conference on Algorithms and Architectures for Parallel Processing. Berlin. 2008:15: 70-78.
[8] W Yang, H Li, J Meng. Conditional connectivity of Cayley graphs generated by transposition trees. Information Processing Letters. 2010; 110(23): 1027-1030.
[9] Sandip Chanda, Abhinandan De. Congestion Relief of Contingent Power Network with Evolutionary Optimization Algorithm. TELKOMNIKA Indonesia Journal of Electrical Engineering.2012; 10(1): 1-8.
[10] Gouxi Chen, Pengcheng Zhang, Meng Zhang, Yuliang Wu. Batch zero steganog- raphic model for graph transformation. TELKOMNIKA Indonesia Journal of Electrical Engineering. 2012; 10(4): 734742.

