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Abstract 
In Graph Theory, independent number and, dominating number are three of the important 

parameters to measure the resilience of graphs, respectively denoted by ( )G  and ( )G  for a graph G
. But predecessors have proved that computing them are very hard. So computing ( )G  and ( )G of 

some particular known graphs is extremely valuable. In this paper, we determine ( )G  and ( )G of 

( , )n k -star graphs, denoted by ,n kS , followed by some relative conclusions of n -star, denoted by nS  as 

the isomorphism of , 1n nS  . In addition, our method giving dominating set of ,n kS  is more easily understood 

than [7], which presented a broadcast algorithm to determine dominating set of ,n kS . 
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1. Introduction 
It is widely known that independent number, dominating number and bondage number 

are the important parameters to measure the resilience of graphs. Next, we see their 
conception: 

Definition 1.1 Let G  be a graph, and I  be a nonempty subset of ( )V G , then I  is 

one independent set of G  if any two nodes of I  is not adjacent in G . Moreover, we call that 

I  is independent number of G  if I  is maximum in all independent sets of G , denoted  by 

( )G . 

Definition 1.2 Let G  be a graph, and S  be a nonempty subset of ( )V G , then S  is 

one dominating set of G  if all nodes of G  is either in S , or adjacent to a node of S . 

Moreover, we call that S  is dominating number of G  if S  is minimum in all dominating sets 

of G , denoted by ( )G . 

Clearly, a maximum independent set of graph G  is a dominating set of G  by Definition 

1.1 and Definition 1.2, so it is easy to get    G G  . 

In a graph, predecessors have shown that computing ( )G  and ( )G  are extremely 

difficult. So computing ( )G  and ( )G  of some particular known graphs is very valuable. For 

example, the ( , )n k -star graphs was first proposed in 1995 by W.K Chiang et al [1]. Because of 

good topological properties of ,n kS , its many properties have been researched such as 

diameter and connectivity [1] [8], pancyclicity [2],  (1)
sk G  and  (2)

sk G  [3] [5] [6], fault 

hamiltonicity and fault hamiltonicity connectivity [4] and the orthers issue [9][10]. In this paper, 
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we determine ( )G  and ( )G  of ( , )n k -star graphs, so that can get  nS  and  nS  and 

of n -star, denoted by nS . 

 
 
2. Preliminaries 

For given integers n  and k , where 1 1k n   , let  1,2,....,nJ n  and let  ,P n k  

be the set of k -permutations on nJ  for1 1k n   , that is,  , {P n k   

1 2... : , ,1 }k i n i jp p p p J p p i j k     . 

Definition 2.1 The  ,n k -star graph, denoted by ,n kS , is an undirected graph with 

vertex-set  ,P n k . The adjacency is defined as follows: a vertex 1 2... ...i kp p p p  is adjacent to 

a vertex 

(1) 1 2 1 1 1i i kp p p p p p   , where 2 i k  ( swap 1p  with ip ). 

(2) 2... kxp p , where  :1n ix J p i k    ( replace 1p  by x ). 

Figure 1 shows a (4,2)-star graph 4,2S . 

 
 

 
 

Figure 1. The structure of a (4,2)-star graph 4,2S  

 
 
The edges of type (1) are referred to as i -edges ( 2 i k  ), and the edges of type (2) 

are referred to as 1-edge. The vertices of type (1) are referred to as swap-adjacent vertices, and 
the vertices of type (2) are referred to as unswap-adjacent vertices. We also call i -edge as 

swap-edge, and call 1-edges as unswap-edge. Clearly, every vertex in ,n kS  has ( 1)k   swap-

adjacent vertices and ( )n k  unswap-adjacent vertices. Usually, if 1 2... kv p p p  is a vertex in

,n kS , we call that ip  is the i -th bit for each i   1, 2,...k . 

By Definition 2.1, we know , 1n n nS S   and ,1n nS K  where nS  is n -star graph and 

nK  is complete graph with order n . So ,n kS  is a generalization of nS . It has been shown by 

Chiang and Chen [1] that nS  is an  1n -regular,  1n -connected vertex-transitive graph 

with  ! !n n k  vertices. 

Lemma 2.2 For any   , 1 2P n k k    , let  : \nV p p J    .Then the 

subgraph of ,n kS  induced by V  is a complete graph 1n kK   , denoted by 1n kK
  . 
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Proof. For any two vertices p  and q  in V  with p q , by the condition (2) of 

definition 2.1, p  and q  are linked in ,n kS  by an unswap-edge. Thus, the subgraph of ,n kS  

induced by V  is a complete graph 1n kK   . □ 

Let    , 1 , 1P n k p n k   . The vertex-set  ,P n k  of ,n kS  can be decomposed 

into  , 1p n k   subsets, each of which induces a complete graph by Lemma 2.2. It is clear 

that, for any two distinct elements x  and y  in  ,P n k , if they are in different complete 

subgraphs 1n kK 
   and 1n kK 

     , then there is at most one swap-edge between x  and 

y  in ,n kS , which is an i -edge if and only if   and   differ only in the i -th bit. Thus, we have 

the following conclusion.  

Lemma 2.3 The vertex-set of ,n kS  can be partitioned into  , 1P n k   subsets, each of 

which induces a complete graph of order ( 1)n k  . Furthermore, there is at most one swap-

edge between any two complete graphs. 

Let ,
i
n kS denote a subgraph of ,n kS  induced by all vertices with the last symbol i  for 

some ni J . 

Lemma 2.4 (Chiang and Chen [1]) ,n kS  can be decomposed into n  subgraphs 1, 1
i
n kS   , 

which is isomorphic to 1, 1n kS   , for each ni J . Moreover, there are
 
 

2 !

!

n

n k




 k-edges between 

1, 1
i
n kS    and 1, 1

j
n kS   , which forms a matching between them, for any , ni j J with i j . 

Corollary 2.5 An ,2nS  can be decomposed into n  subgraphs 1,1
i
nS  , which is 

isomorphic to complete 1nK  , for each ni J . 

 
 
3. Independent number of ,n kS  

In this section, we mainly determine the independent number of ,n kS . Since ,1n nS K , 

we only consider the case 2k  , in the following discussion. 

Lemma 3.1    ,

!

1 !n k

n
S

n k
 

 
 for 2 1k n   . 

Proof. Assume that   ,k n kI V S  is a maximum independent set of ,n kS , then 

 ,k n kI S  by definition 1.1. If    ,

!

1 !n k

n
S

n k
 

 
, then there are at least two nodes of 

kI , which are from one   1 , 1n kK P n k      since ,n kS  can be decomposed into different 

   
!

, 1 ( )
1 !

n
p n k

n k
 

 
 complete graphs   1 , 1n kK P n k      by Lemma 2.3, so that 

the two nodes is adjacent. Thus, it is contrary to definition 1.1. □ 

Lemma 3.2  ,2nS n   for 3n  . 
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Proof. Let   2 ,2nI V S  be a maximum independent set of ,2nS , then  2 ,2nI S  

by definition 1.1. By Lemma 3.1, we get  2 ,2nI S . Thus, Lemma 3.2 can be proved if we 

can construct an 2I , so that 2I n . 

By Lemma 2.5, let  2 {12,23, , 1 , 1}I n n n  , then each vertex of 2I  is from different 

complete   1 ,1nK P n   , clearly, any two nodes of 2I  is not adjacent in ,2nS  by Definition 

2.1, and 2I n . □ 

Theorem 3.3    ,

!

1 !n k

n
S

n k
 

 
 for 2 1k n   . 

Proof. By Lemma 3.1, we get    ,

!

1 !k n k

n
I S

n k
 

 
. Thus, Theorem 3.3 can be 

shown if we can construct an kI , so that 
 

!

1 !k

n
I

n k


 
. 

Let  ,i j
kI  be a vertex-set, which includes the vertices of kI  if the vertices don't include 

element i , and  ,i j
kI  includes the vertices of kI  if the vertices include element i  but swap i  

with j . 

Step 1: In 2,2n kS   , by Lemma 3.2, let      2 12,23, , 1 2 , 2 1}I n k n k n k       . 

Clearly, 2 2I n k   ; 

Step2: In 3,3n kS   , let     23 3 { 3 }n kI n k I        and 3 2{ ,x n kI x x J     

 , 3
2 }x n kI  

. Now, we let 
3

3 3

n k

x
x J

I I
 

  , clearly,   3 3 2 ;xI n k n k      

Step k: In ,n k k kS   , let     1{ }kk n k kI n k k I        and  1{ ,kx n k kI x x J      

 ,
1 }x n k k

kI  
 . Now, we let 

n k k

k kx
x J

I I
 

  , clearly, ( 1) ( 3)(kI n n n k n k      

 
!

2)
1 !

n

n k
 

 
. 

In step  ki i J , it is easy to verify that any two vertices of iI  are not adjacent in 

,n k i iS    by the rules of our construction. □ 

Corollary 3.4  In n-star graph nS ,   !

2n

n
S   for 2n  . 

 
 

4. Dominating number of ,n kS  

In this section, we mainly determine the dominating number of ,n kS . Similarly, since 

,1n nS K  , we only consider the case 2k   in the following discussion. 

Lemma 4.1    
 ,

1 !

!n k

n
S

n k






 for 2 1k n   . 
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Proof. Let   ,n kS V S  be a minimum dominating set of ,n kS , then ,( )n kS S  by 

definition 1.2. By definition 2.1, we have known that ,n kS  is a ( 1)n  -regular graph, so each 

vertex of S  can at most dominate (n - 1) vertices in ,n kS S . If 
( 1)!

( n k 1
( )!

n
S

n k
 

 


， ）  then 

S  can at most dominate  ( 1)!
1 1

( )!

n
n

n k

 
   

 vertices in ,n kS S . Thus, 

 ,

,

( 1)! ( 1)!
( ) 1 1 1

( )! ( )!

! !
( )

( )! ( )!

n k

n k

n n
S V S S n

n k n k

n n
n V S

n k n k

  
         

   
 

 

It is contrary to the definition of dominating number. □ 

Theorem 4.2 ,

( 1)
( )

( )n k

n
S

n k
 




！

！
 for 2 1k n   . 

Proof. By Lemma 4.1, we have shown ,

( 1)!
( )

( )!n k

n
S S

n k
 

 


. Thus, by definition 1.2, 

Theorem 4.2 can be proved if we can construct a dominating set S , so that 
( 1)!

( )!

n
S

n k





. 

We now split ,( )n kV S  into 3 vertex-subsets: n ( 1, 1)}nV P n k    ｛ ， nV    

{ ( 1, )}P n k     and 1 2 1 1 1{ , 2}.n a a k i nV p p p np p p J a       It is easy to verify 

that n , nV V   and nV   have no intersection, and ' "
n n ,

!
( )

( )!n n k

n
V V V V S

n k
   


 since 

'
n

n-1 ! ( 1)
,

n-k ! ( 1)n

n
V V

n k


 

 
（ ） ！

（ ） ！
 and "

n

( 1)!
( 1)

( )!

n
V k

n k


 


. 

Let 1 2p kp p  be any one vertex of nV , then all neighboring-edges of 1 2p kp p  must 

have one unswap-edge connected to 2 knp p  of nV  

Let 1 2 1 1a a kp p p np p    be any one vertex of nV   , then all neighboring-edges of 1p  

2 1 1a a kp p np p    must have one swap-edge connected to 2 1 1 1a a knp p p p p    of nV . 

Thus, we can let nV S , and n

n-1 !

!
V

n k



（ ）

（ ）
. □ 

Corollary 4.3 In n-star graph nS , ( ) ( 1)!nS n   . 

Corollary 4.4 If let 1 2 1 \ }( )x k j n nV xp p p p J x x J  ｛ , then each xV  is a 

minimum dominating set of ,n kS  for 1, 2, ,x n  . 

Corollary 4.5 If S  is a minimum dominating set of ,n kS , then any two vertices of S  

aren't adjacent in ,n kS , and any two neighboring-vertices of S  aren't common. 

Proof. Let 1v  and 2v  be any two vertices of S , if 1v  and 2v  are adjacent in ,n kS , then 

1v  and 2v  can at most dominate 2 4n  vertices of ,n kS S  since either 1v  or 2v  only 

dominate 2n  vertices of ,n kS S . Thus, we can get that S  can at most dominate 
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 2 ( 1) 2 4S n n    vertices of ,n kS S , and can get   2 1S S n    

   , ,2 4 2 2n k n kn n S V S V S       , a contradiction. 

If there exist two neighboring-vertices of S  who are common, then S  can at most 

dominate  1 1S n    vertices of ,n kS S Therefore, we have ( 1) 1S S n     

 , ,( ) 1n k n kV S V S  , a contradiction. □ 

In any case, in Graph Theory, it is rather difficult to compute independent number and 
dominating number of the graphs. Up to now, the conclusions in this respect are confined only 
to a few specific graphs such as cube, hypercube and so on. Thus, the paper is very valuable since 
it solves independent number and dominating number of ( , )n k -star graphs and n -star graphs. 
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