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Abstract 
In this paper, the Crank-Nicolson semi-implicit difference scheme in matrix form is applied to 

discrete the Rudin-Osher-Fatemi model. We also consider five kinds of different boundary conditions: 
Dirichlet boundary conditions, periodic boundary conditions, Neumann boundary conditions, antireflective 
boundary conditions and mean boundary conditions. By comparing the experimental results of Crank-
Nicolson semi-implicit scheme and explicit scheme with the proposed boundary conditions, we can get that 
the semi-implicit scheme can overcome the instability and the number of iterations of the shortcomings that 
the explicit discrete scheme has, and its recovery effects are better than the explicit discrete scheme. In 
addition, the antireflective boundary conditions and Neumann boundary conditions can better maintain the 
continuity of the boundary in image denoising. 
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1. Introduction  

Image denoising is to keep the useful information and reduces or eliminates the 
interference and noise of the image. The Rudin-Osher-Fatemi (ROF) model [1] used the total 
variation (TV) norm as a regularization function, which does not penalize the discontinuity in u , 
and thus allows us to recover the edges of the original image. The ROF model is as follows: 
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with ( ,0)u x given as initial data. The parameter 0  is a balancing factor and 0   is a 

small regularization parameter. 
The corresponding Euler-Lagrange equation of the ROF model is usually solved by the 

explicit scheme [2], but the explicit scheme converges slowly. The Crank-Nicolson (C-N) 
difference scheme [3] is a second-order method in time and unconditionally stable. 
One research tendency addresses image processing algorithms. Kim used the C-N difference 
scheme to solve the ROF model by the point-by-point method [4]. Wang et al. combined the C-
N difference scheme with the fixed point method to discrete the ROF model [5]. The 
experimental results demonstrated that the semi-implicit discrete scheme has fewer iterative 
numbers than the ones of the explicit discrete scheme, and the denoised results are better than 
that of the explicit discrete scheme with the same iterative numbers. But they only considered 
the case of Neumann boundary conditions (BCs).  Kim et al. adopted a linearized C-N 
alternating direction implicit time-stepping procedure to simulate the PDE-based model 
efficiently [6]. The semi-implicit C-N scheme was introduced in [7] based on locally one-
dimensional (LOD)/ additive operator splitting (AOS) for implementing the anisotropic Beltrami 
operator. Niang et al. also proposed an approach based on partial differential equations with C-
N scheme, also showed its efficiency in signal and image processing [8]. Sun et al. proposed an 
improved 2-D maximum entropy algorithm and applied it in lettuce object segmentation [9]. 
Swastika presented the simulation of compressed sensing for Thoracic MR imaging with 
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circulant matrices as the sensing matrices [10]. The simulation results showed that the circulant 
matrices work efficiently for sparse image in the spatial domain. 

In the process of calculating the difference scheme, several kinds of BCs [11] need to 
be considered such as Dirichlet BCs, periodic BCs, Neumann BCs, antireflective BCs and mean 
BCs. To make out the difference among different kinds of BCs, assume a signal in one 
dimensional space 

~

1 0 1 1( , , , , , , , , ,) ,T
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The denoised result is affected not only by  (1), , ( )

T
u u u n  but also by 

 ( 1), , (0)
T

u m u   and  ( 1), , ( )
T

u n u n m  . For the different boundary 

values lu and ru  with different kinds of BCs, we refer the reader to [11] for details.   

In this paper, we will apply the Crank-Nicolson semi-implicit difference scheme in matrix 
form to solve the ROF model with the five kinds of BCs. Section 2 presents the different 
matrices formed by the five kinds of BCs which are used in the semi-implicit algorithm. Section 3 
shows some experimental results. Some conclusions are given in section 4. 
 
 
2. A Semi-implicit Algorithm  

In this section, we will show a semi-implicit algorithm to solve Equation (1). Let 
,
n
i ju  be an 

approximation of  , , ,i j nu x y t  where ,ix i x  ,jy j y  ,nt n t  1.n  Let 
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and 2 2 3/2
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i j i j i jv u u    . By the C-N 

difference scheme, Eq. (3) is discretized into: 
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with 0
,i ju as an initial value, and the definition of the derivative terms is the same as [12]. Then 

u  can be calculated by the point-to-point calculating method.   
Following the idea of [5], the second derivatives of U  can be rewritten as the product of 

some tri-diagonal matrices and the matrix  U . To show the relation between the second 
derivatives xxU , yyU , xyU and the image matrix U , we give an example with 

5 5U 
matrix and let 

,  x y   be the step size as follows.   

(1)The matrices in Dirichlet BCs: 
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(2)The matrices in periodic BCs: 
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(3) The matrices in Neumann BCs can be found in [5]. We denote the corresponding 

matrices 3 3 3 3, , , .D E F G  

(4)The matrices in antireflective BCs:  
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For the denoising problem, only one boundary needs to be considered. Thus the mean 
BCs are the same as the antireflective BCs. For simplicity, we unified 

i i i iD E F G， ， ，  

( 1,2,3,4i  ) as .D E F G， ， ，    Applying the fixed point method for
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According to the same technique in [5], seven new matrices 

1 2 1 2 1 2 3, , , , , ,A A B B C C C

are constructed by , , , , ,A B C D E F . Thus the three matrices dot products in (6) can be 

transformed into the corresponding products of the new matrices. Please refer to [5] for the 
details. So (4) can be rewritten as a linear equation 1
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2H  is a diagonal 2 2n n matrix whose diagonal elements 

are 1
1

2
t   , X andY are 2 1n   vectors. By Gauss-Seidel (G-S) iterative method, the 

solution vector 
2 1n

X
  

is obtained. Then it is reshaped to be the denoised image n nu  . In this 

way, we need to solve a linear equation instead of the point-to-point calculation. 
 
 
3. Numerical Experiments 

In this section, we will show numerical results with the five different kinds of BCs--
Dirichlet BCs, periodic BCs, Neumann BCs, antireflective BCs and mean BCs. The signal to 
noise ratio (SNR) [5] of the image u  is used to measure the level of noise. Higher SNR values 
correspond to good denoising results. Let the space step 1,  10x y      , and time step 

0.5t  . 

    
Figure 1.  Original Image and Noisy Image with Gaussian Noise 0.01   

 
 

Table 1. SNR using  Dirichlet BCs 
                        explicit scheme           semi-implicit scheme 
0.01                5.6963                              6.6595 
0.1                  5.7640                              6.9131 
1                     6.0127                              6.7082 

 
  

   
Figure 2.  Denoised Images with  =0.01、0.1、1 (from left to right), where the Iterative 

Number is 5 using  Dirichlet BCs
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Table 2. SNR using  Periodic BCs 

                       explicit scheme           semi-implicit scheme 
0.01                5.8481                            6.5320 
0.1                  5.8659                            6.6235 
1                     5.8640                            6.7120 

  
 

   

   
First row: semi-implicit scheme. Second row: explicit scheme 

Figure 3.  Denoised Images with  =0.01、 、0.1 1  (from left to right), where the Iterative Number 
is 5 using  Periodic BCs

 
 

Table 3. SNR using  Neumann BCs 

                       explicit scheme           semi-implicit scheme 
0.01                 5.9644                          6.6371 
0.1                   5.7625                          6.7484 
1                      6.1594                          6.8396 

  
 

  

  
First row: semi-implicit scheme. Second row: explicit scheme 

Figure 4. Denoised Images with  =0.01、 、0.1 1  (from left to right), where the Iterative Number 
is 5 using  Neumann BCs 

                 
 

Table 4.  SNR using  Anti Reflective BCs 

                       explicit scheme           semi-implicit scheme 
0.01                 6.0014                         6.6570 
0.1                   5.8645                         6.8484 
1                      6.2503                         6.9312 

  
 

  

   
First row: semi-implicit scheme. Second row: explicit scheme 

Figure. 5  Denoised images with  =0.01、0.1、1  (from left to right), where the Iterative 
Number is 5 using  Anti Reflective BCs 






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From the data of Table 1 and Table 4, we can find that all the values of  SNR using the 
semi-implicit scheme are larger than that of using the explicit scheme, respectively. On the other 
hand, the values of SNR in Table 1, Table 2 and Table 3 also show that the results of the 
Neumann BCs are better than that of the Dirichlet BCs and the periodic BCs, respectively. 
Visually, the boundary in Figure 2 has a serious distortion because of Dirichlet BCs, but the 
Neumann BCs and antireflective BCs can better preserve boundary continuity of the image in 
Figure 3, Figure 4 and Figure 5. The parameter   impacts the denoised image greatly. The 

larger the value of  , the clearer the denoised image. On the other hand, the smaller the value 

of , the smoother the denoised image. 
 

 
4. Conclusion 

In this paper, a new semi-implicit C-N scheme different from the general explicit scheme 
is firstly proposed to discrete the famous ROF model. The denoised problem is written as a 
linear algebra equation problem. The G-S iterative method is used to solve the different linear 
equations with the five different kinds of BCs--Dirichlet BCs, periodic BCs, Neumann BCs, 
antireflective BCs and mean BCs. The numerical results show that the semi-implicit discrete 
scheme gets the larger value of SNR than the explicit scheme, and can better maintain the fine 
scale features.  
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