
TELKOMNIKA, Vol. 11, No. 8, August 2013, pp. 4379~4384
e-ISSN: 2087-278X
 4379

Received February 27, 2013; Revised May 12, 2013; Accepted May 22, 2013

A Novel Architecture of Multi-GPU Computing Card

Sen Guo*1,2, Sanfeng Chen1,2, YongSheng Liang1,2
 1ShenZhen Institute of Information Technology ShenZhen, China

2Shenzhen Key Laboratory of Visual Media Processing and Transmission, Shenzhen, Guangdong,
518172, China

Corresponding author, e-mail: ybbsss1210@126.com, ChenSf@sziit.com.cn, LiangYS@sziit.com.cn

Abstract
The data transmission between GPUS in the existing multi_GPU computing card is often through

PCIE which is in relative low speed, so the PCIE has become bottleneck of Overall performance. A novel
architecture of multi_GPU computing card have been proposed in this paper: A multi-channel memory
which have multiple interfaces is added, including one common interface shared by different GPUs, which
is connected with a FPGA arbitration circuit and several other interfaces connected with dedicated GPUs
frame buffer independently, and this multi-channel memory is called "global shared memory". The result of
a simulation of accelerating computer tomography algebraic reconstruction on multi-GPU demonstrates
effectiveness of this approach.

Keywords: multi-GPU, tomography algebraic reconstruction, GPGPU, CUDA

Copyright © 2013 Universitas Ahmad Dahlan. All rights reserved.

1. Introduction

Computer graphics hardware has been widely used for general purpose computing in
various applications, beyond the original target of computer graphics and gaming industry. The
using computer graphics hardware to accelerate common computation can be tracked back to
machines like the Ikonas [1], the Pixel Machine [2] and Pixel-Planes [3, 4]. In 1999, NVIDIA
Corporation introduced Geforce 256, which was the first consumer-level card on the market with
hardware-accelerated T&L (Transform & Lighting). After that, programable graphics pipeline
was introduced and shading languages were become popular for GPU general purpose
computing. In 2006, NVIDIA Corporation introduced Compute Unified Device (CUDA), as a flag
of the arrival of modern GPGPU. Comparing with traditional GPGPU techniques, CUDA has
several advantages, such as scattered reads, shared memory, faster downloads and readbacks
to or from the GPU, and fully support for integer and bitwise operations. OpenCL, which is very
similar with CUDA, was introduced in 2008 as the first open, royalty-free standard for cross-
platform, parallel programming of modern processors found in personal computers, servers and
handheld/embedded devices [5].

Recent years, a new term "personal supercomputer" emerges in the parallel computing
industry. The personal supercomputers usually have one or more hardware accelerators (mostly
GPUs). Having the advantages like portable, cost-effective and energy-efficient, the personal
supercomputers are obtaining the favorite of engineers, scientists and computer experts.
Furthermore, more and more professional industry software companies provide GPU
acceleration for their products. With the power of GPU, these software usually can get 2x to
more than 10x acceleration on the personal supercomputers, comparing to their corresponding
CPU-only versions.

Multi-GPU graphics card like NVIDIA GTX 690 or AMD Radeon 7970, which has more
than one GPU chips in a single graphics board, is also getting used in personal
supercomputers. But these multi-GPU graphics cards have a disadvantage that the GPUs in the
same board are not intra-connected. The intra-connection doesn't mean the electrical
connection, but the data connection. Each GPU of this single board has different memory
storage, and they cannot access other GPUs memory units directly. This issue will be detailed
in next section.

In this paper, we propose a solution to bridge the different GPUs in the same board.
And we analyze the performance improvement expectation if this solution is adopted by the

 e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 8, August 2013: 4379 – 4384

4380

graphics cards manufacturers. Because CUDA code is clearer to understand and easier to use
than OpenCL, we use CUDA for the solution description and for the experiment implementation.

2. The Disadvantage of Current Multi-GPU graphics card design

As described above, in current design, the GPUs in one single multi-GPU board cannot
communicate to each other directly. But in lots of cases, the programmers usually want to share
some data between different GPUs [6]. Since the GPUs cannot communicate directly, to copy a
buffer from GPU 1 to GPU 2, the program should copy the GPU 1's buffer to system memory
through PCIE and then copy the buffer to GPU 2 through PCIE. Figure 1 gives a diagram of
memory copy between different GPUs.

The PCIE bandwidth is relative much less than GPU access to its memory units [7].
According GPU bandwidth test utility provided by NVIDIA, the host-device download/upload
usually has 2GB/s to 3GB/s bandwidth, while the GPU has more than 100GB/s bandwidth to
their on-board memory storage. So, the data transmission through PCIE usually becomes a
bottleneck for lots of applications running on multi-GPU systems.

Figure 1. Data Flow of Memory Copy from GPU1 to GPU2

3. An Example: Computer Tomography Algebraic Reconstruction

Medical imaging is one of the domains where GPU parallel computing are wildly used.
Generally the CT scanner generates large x-ray projection data, and then these projection data
are reconstructed to a 3D volume, in which each voxel represents the density of the inspected
object. The process of reconstructing the 3D data is called tomographic reconstruction.

There are several methods for CT reconstruction. Usually these methods can be
divided into two categories: the analytic reconstruction methods (such like Comparing to the
commonly used Filtered Back-Projection (FBP) algorithm [8]) and the algebraic reconstruction
methods [9]. The algebraic reconstruction methods usually apply iterative reconstruction
techniques, such as Simultaneous Algebraic Reconstruction Technique(SART) [10].

Comparing to more commonly used FBP method, SART usually performs better,
especially when the set of available projections is sparsely or non-uniformly distributed in angles
[11]. However, SART are rarely applied in most of medical CT systems due to their high
complexity and high computational costs. For example, the SART requires a sequence of
alternating volume projections and corrective back-projections until the reconstructed volume
fits all projection images. This process is very time consuming and difficult to converge to a
result instantaneously. In this paper, we will introduce the multi-GPU implementation of SART,
and analyze the performance bottleneck of it, and how may the global shared memory improve
it.

3.1. SART Algorithm

Given a N = n3volume V , M projection images are obtained by the X-ray detector in M
different angles. Let Pφ denotes the projection image in angle φ, and P denotes a vector storing
all pixels of Pφ, φ = 0, 1, ..., M. Then the algebraic tomography reconstruction can be described
as a linear algebra problem:

TELKOMNIKA e-ISSN: 2087-278X

A Novel Architecture of Multi-GPU Computing Card (Sen Guo)

4381

W V = P (1)

Although the volume has three dimensions, it is flattened as a vector. Similarly although

we should get M project images, and each projection image Pφ has two dimensions, the M
projected images are also flattened as a vector. W is a Rn3 weight matrix, in which wij denotes
the influence factor that voxel vj∈ V contributes its value to pixel pi∈P.

An iterative method is used to solve the equation. At the angle φ, a projection image P’φ
is computed. Then, each voxel is corrected by an accumulated correction according to all pixels
in P’φ. In the back-projection stage, voxels vj∈ V are corrected by the following equation:

'

1 1

i i
i jNi P

ink k n
j j

iji P

p p
w

w
v v

w

 (2)

Where pi is the projection pixel value, pi is the integral acroses the ray, λ is a relaxation factor
and

1

N

inn
w

 is the length of the line. This equation can be divided into following two equations:

'

1

i i
i N

inn

p p

w

 (3)

And:

1 i j ii Pk k
j j

i ji P

w
v v

w

 (4)

From Equation 3 and Equation 4, we can find that each iteration in the SART algorithm

can be divided into four main stages: projection, correction, back-projection and update.
1. Projection stage: Compute line integrals p’I for all rays of Pφ.
2. Correction stage: Subtract the calculated line integral from projection p pi in the projection

image, and normalize it.
3. Back-projection stage: Distribute corrections onto voxels.
4. Update stage: Update the volume.

Equation 3 is computed in projection and correction steps, and Equation 4 is computed
in back-projection and update steps.

Clearly that the most computational intensive processes of this algorithm are projection
and back-projection. Projection and back-projection require integral computation acroses a ray
or inside a voxel. In the other side, the correction and update processes are just matrix add/
substract operations, which are very fast. So the GPU acceleration should focus on the
projection and back-projection processes.

3.2. SART on single GPU

Several papers have proposed GPU-based SART parallelization. [11] gives a detail
CUDA implementation of SART with NVIDIA graphics cards. In this implementation, the user
proposed two techniques: ray-driven projection and voxel-driven back-projection. Ray-driven,
means each ray in the projection stage will be assigned a GPU thread to do the integral acroses
this ray; voxel-driven, means each voxel in the back-projection will be assigned a GPU thread to
handle its correction calculation. The correction step is computed in the ray-driven threads and
the update step is computed in the voxel-driven threads.

These two techniques can be mapped onto GPU programming models trivially. In
projection step, each ray is assigned a thread, and this thread just reads the data from the
voxels it penetrates and calculates the integral. The computation of one ray doesn’t rely on, and
will not affect other rays’ computation result. The voxel-driven back-projection step has the
same situation, each voxel can be calculated and updated independently.

 e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 8, August 2013: 4379 – 4384

4382

So the implementation is trial, just copy the data from host memory to the device
memory, then setup and launch the kernel threads. We will not discuss the performance
optimization on hardware. For detail, please see [11].

3.3. SART on Multi-GPU Graphics

To utilize more than one GPUs to implement SART. We should divide the entire thread
grid to several parts and map them to different GPUs. Because the penetration of the rays of the
corresponding thread parts with the inspect object volume is not cuboid, and is varying due to
different angles, we should sync-up the whole volume data between different GPUs after the
projection steps. For the same reason, We should sync-up the projection plane data (pi) after
the back-projection steps.

Figure 2 shows how to map SART onto more than one GPUs. The problem comes from
the data update in each iteration, especially the data volume update. Because the GPU thread
kernels are very fast, the data transmission between two GPUs contributes a big part to the
overall processing time.

In our experiments on a platform with a NVIDIA GTX690 and Intel i7 3770K, we use a
256×256×256 volume (each voxel is 16-bit) projected to a 512×512 plane for simulation. In each
iteration, the projection kernel takes about 0.8 ms, the back-projection kernel takes about 18.5
ms, but the memory copies even takes near 20.0ms. In other way, each iteration takes about 40
ms.

Figure 2. Map SART onto more than One GPUs

4. The Global Shared Memory Solution

To reduce the communication cost between GPUs on a single board, we have to
establish a inner data connection between the GPUs. A simple solution is let each GPU can
access other GPUs' memory, but this will raise two serious problems: cache consistency
problem and read-after-write consistency problem. Cache consistency problem is caused by
each GPU in the same board has an individual L1 cache, and the read-after-write problem is
caused by that the order of memory access is not guaranteed, especially considering the fact
that the latency of access video memory from GPU memory controller is very high (usually
hundreds GPU clocks).

Here we propose a design idea to address this problem. We call this an idea because
we haven't really built a multi-GPU board according to this design. We can only present this
idea's concept and analyze it theoretically. The design is to add a multi-channel memory to the
multi-GPU board, and this memory is only for transferring data between different GPUs. This
multi-channel memory should have multiple interfaces, including one common interface shared
by different GPUs, which is connected with a FPGA arbitration circuit and several other
interfaces connected with dedicated GPUs frame buffer independently. We can call it "Shared
Memory", but to distinguish the CUDA Shared Memory of a stream multiprocessor (SM), we call
this memory Global Shared Memory. The "Global" means it is not only shared by he processors
in a SM, but shared by all the GPUs. Figure 3 gives a diagram of this design:

TELKOMNIKA e-ISSN: 2087-278X

A Novel Architecture of Multi-GPU Computing Card (Sen Guo)

4383

Figure 3. Diagram of Global Shared Memory Design

The FPGA arbitration circuit controls the access of this Global Shared Memory (GSM),
and make sure only one GPU can access the GSM in one moment. It realizes the lock () and
unlock() functionality for the GSM. The access control to GSM should be very fast for low-
latency GSM read/write access response. This is why we use on-board FPGA, not CPU to
control GSM, because CPU control signals should go through PCIE to each GPU and the same
for the GPU's responses, which will result high latency.

With this GSM, a memory copy from GPU 1 to GPU 2 in a dual-GPU system can be
described as follow:

1. GPU1 requests to lock the global shared memory, wait until success.
2. GPU1 reads its local device memory and write to global shared memory.
3. GPU1 unlocks the global shared memory if it's full or the copy is finished.
4. GPU2 requests to lock the global shared memory, wait until success.
5. GPU2 reads the global shared memory and write to its device memory.
6. GPU2 unlocks the global shared memory if all in global shared memory is read to local

device memory or the copy is finished.

5. Experiments and Conclusion

Because we don't have a real graphics card with this design, we only evaluate the
performance improvement brought by this design in a common multi-GPU graphics cards. In our
experiments, we used a dual-GPU NVIDIA Geforce GTX 690. We allocate a 256MB buffer in
both GPU1 memory and GPU2 memory to simulate a 256MB Global Shared Memory. And to
simulate the real operation of copy the data from GPU1 to GPU2 through GSM, we first let
GPU1 copy the data in GPU1's video memory to the 256MB buffer in GPU1, after GPU1's copy
is finished, let GPU2 copy the data with same size from the 256MB in GPU2 to the destination
buffer of GPU2. Note that this process doesn't perform a real copy from GPU1 to GPU2,it just
simulates the performance of this copy. So the output will be incorrect. However this will not
affect our evaluation for the performance.

The real memory copy from GPU1 to GPU2 with GSM should have some performance
difference with our experiments, but the difference will be not big. Theoretically analyzed, we
can find that the speed of memory copy with GSM is determined by the memory clock, memory
interface width and the latency of FPGA controller. Because FPGA controller and the two GPUs
are directly inter-connected on the board, we can image that the latency will be very low. The
FPGA controller latency should contribute little to the overall memory copy time when the data
to be copied have relative big size.

Again in our experiment on a platform with a NVIDIA GTX690 and Intel i7 3770K, with a
256×256×256 volume (each voxel is 16-bit) projected to a 512×512 plane for simulation. In each
iteration, while the kernels' used time remains the same, the time used by data transmission has
been reduced from 20.0 ms to nearly 1.0 ms. And the overall used time is reduced from nearly
40.0 ms to nearly 20.0 ms. Almost half time can be saved. Wecan find that the memory copy
between GPUs will no longer be the bottleneck for overall performance.

 e-ISSN: 2087-278X

TELKOMNIKA Vol. 11, No. 8, August 2013: 4379 – 4384

4384

Acknowledgements
This research was financially supported by ShenZhen International cooperation project

of science and technology research (NO: ZYA201007070116A), and Science and Technology
Planning Project of ShenZhen (NO.JC200903180648A).

References
[1] D Luebke, G Humphreys. How GPUs work?. Computer. 2007; 40(2): 96-100.
[2] Pat Hanrahan. Why are Graphics Systems so Fast?. Proceeding of 18th International Conference on

Parallel Architectures and Compilation Techniques. NewYork. 2009; 9: 34-36.
[3] William Mark. Future Graphics Architectures. ACM Queue. 2008; 23(3): 56-64.
[4] J Nickolls, WJ Dally. The gpu computing era. IEEE Transactions on Microsoft. 2010; 30(2): 56-69.
[5] Kayvon Fatahalian, Mike Houston. A Closer Look at GPUs. Communications of the ACM. 2008;

51(10): 50-57
[6] Benjamin Block, Peter Virnau, Tobias Preis. Multi-GPU accelerated multi-spin Monte Carlo

simulations of the 2D Ising model. Computer Physics Communications. 2010; 181(4): 1549-1556.
[7] Enos JJ, Guochun Shi, Showerman. GPU clusters for high-performance computing. Proceeding of

Cluster Computing and Workshops. Beijing. 2009; 4: 1-8.
[8] Gordon R, Bender R, Herman GT. Algebraic reconstruction techniques (ART) for three-dimensional

electron microscopy and x-ray photography. 1970; 29(3): 471-481.
[9] AH Andersen, AC Kak. Simultaneous Algebraic Reconstruction Technique (SART): A superior

implementation of the ART algorithm. Ultrasonic Imaging. 1984; 6(1): 81-94.
[10] Avinash C Kak, Malcolm Slaney. Principles of computerized tomographic imaging. Classics in Applied

Mathematics. 2001; 33(1): 329-332.
[11] Yuqiang Lu. Accelerating Algebraic Reconstruction Using CUDA-Enabled GPU. Proceeding of

Computer Graphics, Imaging and Visualization. HongKong. 2009; 11: 480-485.

