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Abstract 
The data transmission between GPUS in the existing multi_GPU computing card is often through 

PCIE which is in relative low speed, so the PCIE has become bottleneck of Overall performance. A novel 
architecture of multi_GPU computing card have been proposed in this paper: A multi-channel memory 
which have multiple interfaces is added, including one common interface shared by different GPUs, which 
is connected with a FPGA arbitration circuit and several other interfaces connected with dedicated GPUs 
frame buffer independently, and this multi-channel memory is called "global shared memory". The result of 
a simulation of accelerating computer tomography algebraic reconstruction on multi-GPU demonstrates 
effectiveness of this approach. 
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1. Introduction  

Computer graphics hardware has been widely used for general purpose computing in 
various applications, beyond the original target of computer graphics and gaming industry. The 
using computer graphics hardware to accelerate common computation can be tracked back to 
machines like the Ikonas [1], the Pixel Machine [2] and Pixel-Planes [3, 4]. In 1999, NVIDIA 
Corporation introduced Geforce 256, which was the first consumer-level card on the market with 
hardware-accelerated T&L (Transform & Lighting). After that, programable graphics pipeline 
was introduced and shading languages were become popular for GPU general purpose 
computing. In 2006, NVIDIA Corporation introduced Compute Unified Device (CUDA), as a flag 
of the arrival of modern GPGPU. Comparing with traditional GPGPU techniques, CUDA has 
several advantages, such as scattered reads, shared memory, faster downloads and readbacks 
to or from the GPU, and fully support for integer and bitwise operations. OpenCL, which is very 
similar with CUDA, was introduced in 2008 as the first open, royalty-free standard for cross-
platform, parallel programming of modern processors found in personal computers, servers and 
handheld/embedded devices [5]. 

Recent years, a new term "personal supercomputer" emerges in the parallel computing 
industry. The personal supercomputers usually have one or more hardware accelerators (mostly 
GPUs). Having the advantages like portable, cost-effective and energy-efficient, the personal 
supercomputers are obtaining the favorite of engineers, scientists and computer experts. 
Furthermore, more and more professional industry software companies provide GPU 
acceleration for their products. With the power of GPU, these software usually can get 2x to 
more than 10x acceleration on the personal supercomputers, comparing to their corresponding 
CPU-only versions. 

Multi-GPU graphics card like NVIDIA GTX 690 or AMD Radeon 7970, which has more 
than one GPU chips in a single graphics board, is also getting used in personal 
supercomputers. But these multi-GPU graphics cards have a disadvantage that the GPUs in the 
same board are not intra-connected. The intra-connection doesn't mean the electrical 
connection, but the data connection. Each GPU of this single board has different memory 
storage, and they cannot access other GPUs memory units directly. This issue will be detailed 
in next section. 

In this paper, we propose a solution to bridge the different GPUs in the same board. 
And we analyze the performance improvement expectation if this solution is adopted by the 
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graphics cards manufacturers. Because CUDA code is clearer to understand and easier to use 
than OpenCL, we use CUDA for the solution description and for the experiment implementation. 
 
 
2. The Disadvantage of Current Multi-GPU graphics card design 

As described above, in current design, the GPUs in one single multi-GPU board cannot 
communicate to each other directly. But in lots of cases, the programmers usually want to share 
some data between different GPUs [6]. Since the GPUs cannot communicate directly, to copy a 
buffer from GPU 1 to GPU 2, the program should copy the GPU 1's buffer to system memory 
through PCIE and then copy the buffer to GPU 2 through PCIE. Figure 1 gives a diagram of 
memory copy between different GPUs. 

The PCIE bandwidth is relative much less than GPU access to its memory units [7]. 
According GPU bandwidth test utility provided by NVIDIA, the host-device download/upload 
usually has 2GB/s to 3GB/s bandwidth, while the GPU has more than 100GB/s bandwidth to 
their on-board memory storage. So, the data transmission through PCIE usually becomes a 
bottleneck for lots of applications running on multi-GPU systems. 

 

 
Figure 1. Data Flow of Memory Copy from GPU1 to GPU2 

 
 
3. An Example: Computer Tomography Algebraic Reconstruction 

Medical imaging is one of the domains where GPU parallel computing are wildly used. 
Generally the CT scanner generates large x-ray projection data, and then these projection data 
are reconstructed to a 3D volume, in which each voxel represents the density of the inspected 
object. The process of reconstructing the 3D data is called tomographic reconstruction. 

There are several methods for CT reconstruction. Usually these methods can be 
divided into two categories: the analytic reconstruction methods (such like Comparing to the 
commonly used Filtered Back-Projection (FBP) algorithm [8]) and the algebraic reconstruction 
methods [9]. The algebraic reconstruction methods usually apply iterative reconstruction 
techniques, such as Simultaneous Algebraic Reconstruction Technique(SART) [10]. 

Comparing to more commonly used FBP method, SART usually performs better, 
especially when the set of available projections is sparsely or non-uniformly distributed in angles 
[11]. However, SART are rarely applied in most of medical CT systems due to their high 
complexity and high computational costs. For example, the SART requires a sequence of 
alternating volume projections and corrective back-projections until the reconstructed volume 
fits all projection images. This process is very time consuming and difficult to converge to a 
result instantaneously. In this paper, we will introduce the multi-GPU implementation of SART, 
and analyze the performance bottleneck of it, and how may the global shared memory improve 
it. 

 
3.1. SART Algorithm 

Given a N = n3volume V , M projection images are obtained by the X-ray detector in M 
different angles. Let Pφ denotes the projection image in angle φ, and P denotes a vector storing 
all pixels of Pφ, φ = 0, 1, ..., M. Then the algebraic tomography reconstruction can be described 
as a linear algebra problem: 
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W V = P                                        (1) 
 
Although the volume has three dimensions, it is flattened as a vector. Similarly although 

we should get M project images, and each projection image Pφ has two dimensions, the M 
projected images are also flattened as a vector. W is a Rn3 weight matrix, in which wij denotes 
the influence factor that voxel vj∈ V contributes its value to pixel pi∈P. 

An iterative method is used to solve the equation. At the angle φ, a projection image P’φ 
is computed. Then, each voxel is corrected by an accumulated correction according to all pixels 
in P’φ. In the back-projection stage, voxels vj∈ V are corrected by the following equation: 

 

'

1 1

i i
i jNi P

ink k n
j j

iji P

p p
w

w
v v

w







 





 





                         (2) 

 
Where pi is the projection pixel value, pi is the integral acroses the ray,  λ is a relaxation factor 
and
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From Equation 3 and Equation 4, we can find that each iteration in the SART algorithm 

can be divided into four main stages: projection, correction, back-projection and update. 
1. Projection stage: Compute line integrals p’I for all rays of Pφ. 
2. Correction stage: Subtract the calculated line integral from projection p pi in the projection 

image, and normalize it. 
3. Back-projection stage: Distribute corrections onto voxels. 
4. Update stage: Update the volume. 

Equation 3 is computed in projection and correction steps, and Equation 4 is computed 
in back-projection and update steps. 

Clearly that the most computational intensive processes of this algorithm are projection 
and back-projection. Projection and back-projection require integral computation acroses a ray 
or inside a voxel. In the other side, the correction and update processes are just matrix add/ 
substract operations, which are very fast. So the GPU acceleration should focus on the 
projection and back-projection processes. 
 
3.2. SART on single GPU 

Several papers have proposed GPU-based SART parallelization. [11] gives a detail 
CUDA implementation of SART with NVIDIA graphics cards. In this implementation, the user 
proposed two techniques: ray-driven projection and voxel-driven back-projection. Ray-driven, 
means each ray in the projection stage will be assigned a GPU thread to do the integral acroses 
this ray; voxel-driven, means each voxel in the back-projection will be assigned a GPU thread to 
handle its correction calculation. The correction step is computed in the ray-driven threads and 
the update step is computed in the voxel-driven threads. 

These two techniques can be mapped onto GPU programming models trivially. In 
projection step, each ray is assigned a thread, and this thread just reads the data from the 
voxels it penetrates and calculates the integral. The computation of one ray doesn’t rely on, and 
will not affect other rays’ computation result. The voxel-driven back-projection step has the 
same situation, each voxel can be calculated and updated independently. 
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So the implementation is trial, just copy the data from host memory to the device 
memory, then setup and launch the kernel threads. We will not discuss the performance 
optimization on hardware. For detail, please see [11]. 
 
3.3. SART on Multi-GPU Graphics 

To utilize more than one GPUs to implement SART. We should divide the entire thread 
grid to several parts and map them to different GPUs. Because the penetration of the rays of the 
corresponding thread parts with the inspect object volume is not cuboid, and is varying due to 
different angles, we should sync-up the whole volume data between different GPUs after the 
projection steps. For the same reason, We should sync-up the projection plane data (pi) after 
the back-projection steps. 

Figure 2 shows how to map SART onto more than one GPUs. The problem comes from 
the data update in each iteration, especially the data volume update. Because the GPU thread 
kernels are very fast, the data transmission between two GPUs contributes a big part to the 
overall processing time. 

In our experiments on a platform with a NVIDIA GTX690 and Intel i7 3770K, we use a 
256×256×256 volume (each voxel is 16-bit) projected to a 512×512 plane for simulation. In each 
iteration, the projection kernel takes about 0.8 ms, the back-projection kernel takes about 18.5 
ms, but the memory copies even takes near 20.0ms. In other way, each iteration takes about 40 
ms. 

 
 

 
 

Figure 2. Map SART onto more than One GPUs  
 
 
4. The Global Shared Memory Solution  

To reduce the communication cost between GPUs on a single board, we have to 
establish a inner data connection between the GPUs. A simple solution is let each GPU can 
access other GPUs' memory, but this will raise two serious problems: cache consistency 
problem and read-after-write consistency problem. Cache consistency problem is caused by 
each GPU in the same board has an individual L1 cache, and the read-after-write problem is 
caused by that the order of memory access is not guaranteed, especially considering the fact 
that the latency of access video memory from GPU memory controller is very high (usually 
hundreds GPU clocks). 

Here we propose a design idea to address this problem. We call this an idea because 
we haven't really built a multi-GPU board according to this design. We can only present this 
idea's concept and analyze it theoretically. The design is to add a multi-channel memory to the 
multi-GPU board, and this memory is only for transferring data between different GPUs. This 
multi-channel memory should have multiple interfaces, including one common interface shared 
by different GPUs, which is connected with a FPGA arbitration circuit and several other 
interfaces connected with dedicated GPUs frame buffer independently. We can call it "Shared 
Memory", but to distinguish the CUDA Shared Memory of a stream multiprocessor (SM), we call 
this memory Global Shared Memory. The "Global" means it is not only shared by he processors 
in a SM, but shared by all the GPUs. Figure 3 gives a diagram of this design: 
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Figure 3. Diagram of Global Shared Memory Design 
 
 

The FPGA arbitration circuit controls the access of this Global Shared Memory (GSM), 
and make sure only one GPU can access the GSM in one moment. It realizes the lock () and 
unlock() functionality for the GSM. The access control to GSM should be very fast for low-
latency GSM read/write access response. This is why we use on-board FPGA, not CPU to 
control GSM, because CPU control signals should go through PCIE to each GPU and the same 
for the GPU's responses, which will result high latency.  

With this GSM, a memory copy from GPU 1 to GPU 2 in a dual-GPU system can be 
described as follow:  

1. GPU1  requests  to  lock  the  global  shared  memory,  wait  until  success. 
2. GPU1  reads  its  local  device  memory  and  write  to  global  shared  memory. 
3. GPU1  unlocks  the  global  shared  memory  if  it's  full  or  the  copy  is  finished. 
4. GPU2  requests  to  lock  the  global  shared  memory,  wait  until  success. 
5. GPU2  reads  the  global  shared  memory  and  write  to  its  device  memory. 
6. GPU2 unlocks the global shared memory if all in global shared memory is read to local 

device memory or the copy is finished. 
 
 
5.  Experiments and Conclusion 

Because we don't have a real graphics card with this design, we only evaluate the 
performance improvement brought by this design in a common multi-GPU graphics cards. In our 
experiments, we used a dual-GPU NVIDIA Geforce GTX 690. We allocate a 256MB buffer in 
both GPU1 memory and GPU2 memory to simulate a 256MB Global Shared Memory. And to 
simulate the real operation of copy the data from GPU1 to GPU2 through GSM, we first let 
GPU1 copy the data in GPU1's video memory to the 256MB buffer in GPU1, after GPU1's copy 
is finished, let GPU2 copy the data with same size from the 256MB in GPU2 to the destination 
buffer of GPU2. Note that this process doesn't perform a real copy from GPU1 to GPU2,it just 
simulates the performance of this copy.  So the output will be incorrect. However this will not 
affect our evaluation for the performance. 

The real memory copy from GPU1 to GPU2 with GSM should have some performance 
difference with our experiments, but the difference will be not big. Theoretically analyzed, we 
can find that the speed of memory copy with GSM is determined by the memory clock, memory 
interface width and the latency of FPGA controller. Because FPGA controller and the two GPUs 
are directly inter-connected on the board, we can image that the latency will be very low. The 
FPGA controller latency should contribute little to the overall memory copy time when the data 
to be copied have relative big size.  

Again in our experiment on a platform with a NVIDIA GTX690 and Intel i7 3770K, with a 
256×256×256 volume (each voxel is 16-bit) projected to a 512×512 plane for simulation. In each 
iteration, while the kernels' used time remains the same, the time used by data transmission has 
been reduced from 20.0 ms to nearly 1.0 ms. And the overall used time is reduced from nearly 
40.0 ms to nearly 20.0 ms. Almost half time can be saved. Wecan find that the memory copy 
between GPUs will no longer be the bottleneck for overall performance.  
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