
TELKOMNIKA, Vol. 11, No. 8, August 2013, pp. 4556~4564 
e-ISSN: 2087-278X 
      4556 

  

Received March 15, 2013; Revised May 16, 2013; Accepted May 27, 2013 

A Method of Discovering Tolerance Markov Blanket 
based on Completely Dependent Unknown 

Components 
 
 

1Hongzhou He*, 2Mingtian Zhou 
1College of Mathematics & Computer Science, Mianyang Normal University, 621000, China 

2School of Computer Science and Engineering, University of Electronic Science & Technology of China, 
Chengdu 611731, China 

*Corresponding author, e-mail:  zmoonmoonlhm@yahoo.com.cn   
 
 

Abstract 
A novel tolerance feature subset selection method from incomplete data set, denoted by MaxG-

IIAMB, is proposed to pick out the Markov-boundary (MB), the minimal subset of features, of target 
variable but without making any assumption about the unknown component distribution. The classification 
experimental results of risk factors observed in a sample of 1841 employees of a Czech car factory 
demonstrate the practicability and superiority of our method over the classical expectation-maximization 
(EM) and available case technique (ACA). 
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1. Introduction  

Feature subset selection (FSS), the precondition of supervised probabilistic 
classification, aims to select the necessarily features for many under-sample and high-
dimension samples such as risk factor analysis [1] and information retrieval [2]. The Markov-
boundary (MB) [3-4] is one of the most known and efficient solutions for FSS. Markov-boundary 
of a class variable C, MB(C), is defined as any minimal subset of full feature set F such that C is 
conditionally independent of the rest of F given MB(C). In information science field, there has 
been a growing interest in picking out the MB automatically from sample data set. The 
constraint-based (CB) algorithms, such as PCMB [5], IAMB [6] or its variants: Fast-IAMB [7] and 
Inter-IAMB [8] have been proposed to address the problem. These methods systematically 
check the data for independence relations and use those relationships to infer necessary 
features in the MB. When no unknown component in instances of the data set, they can 
estimate efficiently the MB (C). Unfortunately, when the database is not completed, i.e., some 
components are reported as unknown, these methods do not function any more.  

The Gibbs sampling [9] and the EM algorithm [10-12] are known solutions to handle 
incomplete data sets, but they assume implicitly that the distribution of unknown component 
depends only on the observed values in the data set. Under this assumption, the unknown 
values can be inferred from the available data. However, this assumption does not hold and it is 
hard to test in practice on the one hand, on the other hand, the decrease in accuracy may be 
severe with EM-based methods once the assumption is not held. 

Based on Ramoni’s ideas in [13], we give a novel tolerance test method, denoted by 
MaxG-IIAMB, for discovering the Markov-boundary (MB) of target variable in an incomplete data 
set. Without any assumption about the unknown components distribution, MaxG-IIAMB gets 
over the shortcoming in [9-12] by maximizing the conditional dependence measure over all 
possible ways to restore the unknown components. According to the idea in [13], when no 
information about the distribution of unknown component is available, an incomplete data set 
contains the set of all possible estimates. In this paper, we provide the detail description of 
these constraints in obtaining the completion of an incomplete data set. 

The remainder of this paper describes our approach. Section 2 gives the formal 
description of involved problem and reviews the background and motivation of the research. 



TELKOMNIKA  e-ISSN: 2087-278X  
 

A Method of Discovering Tolerance Markov Blanket based on Completely… (Hongzhou He) 

4557 

Section 3 describes the theoretical framework of the method, while Section 4 applies our 
method to conduct experiments on synthetic incomplete data sets in [1] and compare its 
performance with the other two methods: available case analysis (ACA) and maximum 
likelihood with EM. 

 
 

2. Problem Description 
Let D={d1,d2,…, dN} be data set, ds (s=1,2,…N) is a d-dimension(d≥3 for convenient in 

subsequent discussion) instance column feature vector with its  each component valued from 
discrete random variable. We denote the two of these random variables as X, Y and a set of 
some other variable as Z. We will discuss the independence and/or dependence between X and 
Y given condition Z. Notations X⊥ZY and X//ZY mean that variable X is conditional independent 
and dependent on variable Y given condition Z in some distribution P, respectively. Constraint-
based learning methods [5-8] systematically check the data for independence relations and use 
those relationships to infer necessary features included in the MB.  

A very important measure is mutual information content I(X; Y) between X and Y and 
condition mutual information content I(X; Y |Z) between X and Y conditionally on Z as follow: 
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Where p(x, y) and p(x, y, z) is the joint probability distribution; p(x|z), p(y|z) and p(x,y|z) 

are all condition probability distribution. 
When D is completed, that is, all components of each ds are known, the computation of 

I(X; Y |Z) is straightforward. Unfortunately, the value cannot be computed when D is not 
complete, i.e., some components in some ds are reported as unknown. If Z is empty, we wish to 
estimate the maximum value of I(X; Y) from the incomplete data set D. These unknown 
components take on multiple types of incomplete cases that are relevant to the estimation of n(i, 
j), the number of instances X takes on xi, Y takes on yj occurring simultaneously in D. For 
instance, Figure 1(a) shows a data set composed of eight instances with several unknown X 
and Y components by “?” (for simplicity, we suppose xi=i and yj =j). n(i,?) will, for instance, 
denote the number of instances where X takes on i and Y is unknown. n(1,?)=2 in this example 
(see vector d3 and d6 in Figure 1(a)). Figure 1(b) gives the histogram of n(.,.) distribution. The 
issues involved in estimating theses values from an incomplete data set D are better explained 
if we regard D as the result of a deletion process applied to a completed but unknown database 
Dc. We define a consistent completion of D to be any completed database Dc from which we can 
obtain D using some deletion process. The set of consistent completion Dc is given by all 
databases in which the unknown components are replaced by one of the possible values of the 
unobserved variables. 
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Figure 1.  Data Set with some Components of Variable X, Y Unknown (a) and Number of 
Instances with some X, Y Components (b) 
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In general, there have been three types of assumption about distribution of the unknown 
component: 

a. unknown completely at random (UCR): the distribution of an unknown component 
neither depends on observed values nor unobserved values in the data set; 

b. unknown partly dependency (UPD): the distribution of an unknown component is a 
function of the observed values in the data set; 

c. unknown completely dependency (UCD): the distribution of an unknown component 
depends on both observed and unobserved values in the data set. 

In order to specify the deletion processes, a dummy binary column vector F=(F1,F2,…, 
Fm)T may be associated with each feature variable F, here m is the number of states for variable 
F. When component F=fk (k∈{1,2,…,m}) is not observed in some probability in D, iff (if and only 
if) the Fk takes on value ’1’ in that probability. When the probability distribution of each Fk is 
independent of the F and other variables, the data may be seen as UCR; when probability 
distribution of each Fk is a function of the observed values in the data set, data are UPD; when 
probability distribution of each Fk is a function of the observed and unobserved values, data are 
UCD. The Gibbs sampling [9] and expectation maximization (EM) algorithm [14] are well known 
solutions to handle incomplete data sets but they rely on the assumption that data are UPD. The 
problem is that UCR and UPD assumptions are hard, if not impossible, to test. Most important, 
one cannot simply infer the unknown component from the observed ones anymore when the 
data is UCD. Hence, we need a general approach to deal with the UCD worst-case. 

 
 

 
 

Figure 2. IAMB Algorithm for Learning Markov-Boundary of Class Variable C in Feature Set F 
 
 

In our implementation, we use the algorithm in [6], named IAMB (see Figure 2 above), 
and a statistically-oriented conditional independence test based on the G-statistical:  
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Where m, p, q is the number of states for variable X, Y and condition Z respectively, 

n(i,j,k) is number of X takes on xi, Y takes on yj and Z takes on zk occurring simultaneously in 
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The algorithm in Figure 2 is a two phase approach. The growing phase attempts to add 
the most dependent variables to the Markov blanket (a superset of MB) and the shrinking phase 
attempts to remove as many irrelevant variables as possible. 

Tsamardinos et al. prove in [8] that IAMB returns the correct Markov-boundary under 
the assumptions that independence test are reliable and that the learning data set is a sample 
from a distribution P faithful to a Directed Acyclic Graph (DAG) G. A distribution P is said faithful 
with respect to G with vertex set F, if < G, P > satisfies the faithfulness condition as follow: a. the 
set of parents, children and parents of children of each variable F∈F is the unique Markov 

Phase I (forward growing) 
MB = , 
While MB has changed 

Find the feature X in F-MB-{C} that maximizes  
I(C; X | MB)) 

If C// MB X 
Add X to MB 

End If 
End While 
Phase II (backwards shrinking) 
Remove from MB all variables X for C⊥MB –{X}X 
Return MB 
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boundary of F, and b. F and variable F’ are not adjacent in G  iff there exists E∈ F\{F∪F’ } such 
that F⊥EF’ (see [15] ). 

 
    

3. Tolerance Test 
3.1. Statistical Test 

Following the principle in Section 2, we proposed a novel tolerance statistical test with 
no assumptions about the unknown component distribution. This test makes always the worst-
case dependency when independency cannot be guaranteed in all the distributions associated 
with the consistent data completion Dc. Let I(X; Y |Z; Dc) be the value of I(X; Y |Z) evaluated on 
complete set Dc, we give the following definition.  

Definition The notation It(X;Y|Z) is called a tolerance conditional mutual information 
content with respect to I(X;Y|Z) if It(X;Y|Z) is the supremum of I(X;Y|Z;Dc) for all incomplete data 
set D and for every consistent data completion Dc  obtained from the D , i.e.  
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The tolerance statistical test resulted from the above It(X;Y|Z) always takes the worst-

case assumption about the unknown component distribution to decide whether X and Y are 
conditionally independent given Z. It is implicitly in the definition that It(X;Y|Z;Dc) = I(X;Y|Z;Dc) for 
any completion Dc obtained from D. In general, as the request of faithfulness, we would add an 
edge in G to mean a direct dependency when the CB algorithm is run on these data during the 
course of completion. The following theorem shows that a tolerance Markov blanket can be 
obtained using IAMB(C, D, It) (i.e., IAMB run with the tolerance test).  

Theorem Suppose the independence tests are correct and that the learning data set Dc 
is an independent and identically distributed sample from a probability distribution P faithful to a 
DAG G. D is an incomplete data set obtained from Dc by some type of distribution of unknown 
component. Then the algorithm IAMB (C, D, It) returns a tolerance Markov blanket of C. 

Proof If Y and C are parents or children of the same node X in G, then C⊥Z∪{X}Y for 
Z=F-{C}∪{Y}. Recall that IAMB works in two stages. In the forward growing stage, candidate 
variables are added sequentially to the current MB(C) candidate set when they are not found 
independent on C conditioned on the current MB(C). In the backwards shrinking stage, the extra 
variable are removed from MB(C). So Y and X will enter this set during the first stage, but Y will 
be removed during the second stage because of C⊥Z∪{X}Y for Z=F-{C}∪{Y}; b. If Y∈MB(C) and 
C are neither parents nor children of the same node Z∈F-{C}∪{Y} in G,  then Y is one of the 
parents and children of C in G according to the faithfulness assumption, thus Y remains 
dependent on C conditioned on any Z∈F-{C}∪{Y}. From the above definition, we have It(C; 
Y|Z)≥ I(C; Y|Z; Dc) for all Z∈F-{C}∪{Y}.  So feature variable Y is necessarily in the output of 
IAMB(C, D) run with the tolerance test.  

 
3.2. Independent Test 

We will show how to design practically a tolerance test based on the G-statistic. Let 
nD(i,j,k) be the number of instances in which X takes on xi , Y takes on yj and Z takes on zk 
occurring simultaneously in incomplete data set D. let ri , rj , rk, sij, sik, sjk and tijk be the number of 
additional instances as contribution to n (i,j,k) in completion Dc owing to nD(?,j,k), nD(i,?,k), 
nD(i,j,?),  nD(?,?,k),  nD(?,j,?),  nD(i,?,?) and  n(?,?,?) in incomplete data set D, respectively.     
The value that would be computed from the complete data set Dc (if known) is                                  
n(i, j, k)=nD(i, j, k)+ri+rj+rk+sij+sik+sjk+tijk . 

With the above result in mind, we devised an algorithm called UtoMaxG to approximate 
the maximum G, which is depicted in Figure 3. The general idea is to select sequentially the 
triple (i, j, k) that increases most G. 

The incomplete information of X, Y and Z in D should impose several constraints on ri , 
rj , rk, sij, sik, sjk and tijk. We consider the following constraint maximum estimate of G related to 
equation (3): Max G subject to: 
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Figure 3. UtoMaxG Algorithm for Completing D 
 

 
4. Experimental 

This section gives the results of an experiment based on synthetic data in [1] when UCR, 
UPD and UCD are all considered. The aim of these experiments is to show that the MB returned 
by our method can reveal interesting dependencies that may have lost by standard approaches: 
the available case analysis (i.e., using only the instances where X, Y, Z are known for the 
estimation of X⊥ZY, denoted by ACA) and the EM maximum a posterior probability (EM-MAP) 
algorithm [15]. 

 
4.1. Method and Data Set 

We consider the Interleaved Incremental Association Markov Boundary (Inter-IAMB) [6, 
16] as our reference Markov boundary discovery algorithm. Inter-IAMB is a variant of IAMB that 

Input: feature variables X, Y; conditioning set Z; an incomplete data set D; 
Output: the maximum for the G-statistic MaxG; 
For all i, j, k do 
Compute nD(i, j, k) 
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End for 
For all i, j, k do 

( , , ) (.,., )( , , )
(., , ) ( ,., )

n i j k n ki j k
n j k n i k

 
D D

D D
 

End for 
/*no increasing sort to all σ(i,j,k) and save the result to an  one-dimension array Q*/ 
Q=NISort {σ(i,j,k)} 
idx = 1 /* index of the first element of Q*/ 
Repeat 
Add as much as instances for the i, j, k with respect to above idx. 
idx = idx + 1 
Until D is complete 
MaxG = G-statistic computed by equation (3) in the complete data set. 
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has been proposed to improve its data efficiency while still being correct under faithfulness 
assumptions. The difference between IAMB and Inter-IAMB is that the shrinking phase is 
interleaved into the growing phase in Inter-IAMB. We compare the accuracy of Inter-IAMB with 
the standard G-test using the ACA and the EM-MAP resample approach, denoted by stA-IIAMB 
and stE-IIAMB respectively, versus Inter-IAMB with the tolerance G-test based on UtoMaxG, 
denoted by MaxG-IIAMB. In our implementation, Inter-IAMB considers both tests to be reliable 
when the number of instances in D is at least ten times the number of degrees of freedom and 
skips it otherwise. Skipping the test means the variables are assumed to be independent without 
actually performing the test. 

A data set is reported in [1] that involves six boolean risk factors R1,…, R6 observed in a 
sample of 1841 employees of a Czech car factory. Ramoni and Sebastiani considered these 
data in [13] and used a standard scoring-based structure learning algorithm to output a structure 
that they used afterwards as a toy problem to learn the conditional probability tables from 
incomplete data sets. They assess the robustness of their method called Robust Bayesian 
Estimator (RBE) that produces probability intervals containing the estimates that can be learned 
from all completed data sets. In this section, we use the same toy problem to assess the 
performance of our feature selection method. The Bayesian network which represents the 
dependency relation of these variables is depicted in Figure 4. 

The goal here is to infer the Markov boundary of R3, that consists of {R2, R4, R5, R6}, 
only one possible false positive here (namely R1). In order to increase the possible number of 
false positives), we augment the problem by adding three extra independent variables, denoted 
by X1, X2 and X3, which has identical distribution to R1, as depicted in Figure 4. Note that the 
maximum number of false negatives now equals the maximum number of false positives.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: The Bayesian Network Related to the Risk Factors R1, R2, R3, R4, R5, R6 with Three 

Extra Independent Variables X1, X2, X3 
 
 

4.2. Procedure used to Remove Data 
We associate several dummy feature column vector Ri=(R1(i), R2(i),…, RMi(i))T with its 

every component takes on one of the two values 0 and 1 with some probability. Here Mi is the 
number of states for the variable Ri. For each case in the original data set, we generated a 
combination of values of Ri and removed the kth state rki of the variable Ri if the value of Rk(i) 
was 1. X1, X2 and X3 are also subject to the deletion. The variables Xj are associated with a 
dummy feature column vector Xj=(X1(j),X2(j),…,XM1(j))T. 

a. All variables R1,…, R6 and X1, X2, X3 in the data set are subject to the deletion 
process covered in section 2. The original network was augmented by the nine dummy feature 
vectors Ri(i=1,…,6) and Xj (j=1,2,3), marginally independent of R1,…, R6 and X1, X2, X3, as 
shown in figure 5(a). Thus, data removed with this process were UCR. This process was 

 
R1 

R2 

R3 R4 

R5 R6 

X1 

X2 

X3 

R1=0 R1=1 
0.02  0.98 

       R5=0 R5=1 
R3=0 0.81  0.19 
R3=1 0.75  0.25 
R4=0 0.75  0.25 
R4=1 0.70  0.30 

       R4=0 R4=1 
R2=0 0.57  0.43 
R2=1 0.50  0.50 

       R3=0 R3=1 
R2=0 0.57  0.43 
R2=1 0.50  0.50 

       R6=0 R6=1 
R3=0 0.81  0.19 
R3=1 0.75  0.25 
R5=0 0.75  0.25 
R5=1 0.70  0.30 

                     R2=0 R2=1 
R1, X1, X2, X3=0 0.57  0.43 
R1, X1, X2, X3=1 0.50  0.50 
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repeated with two sets of probability values: P(Rk(i)=1)=0.05 (i=1,.., 6; k=1,…,Mi), p(Xk(j)=1) = 
0.05 (j=1,2,3;k= 1,…, M1)  for the first set, and P(Rk (i)=1)=0.1 (i= 1,.., 6; k=1,…,Mi), p(Xk(j)=1) = 
0.1(j=1,2,3;k= 1,…, M1)  for the second set.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Figure 5: Graphical Representation of the UCR, UPD and UCD Unknown 
Component Distribution based on Figure 4 

 
       

b. Only the variables R3, R5, and R6 are subject to the deletion process covered in 
section 2. We associate these variables with dummy feature column vector R3, R5 and R6. The 
distribution for each of these dummy vectors was a function of the variables R1, R2, and R4. 
Since R1, R2, and R4 are fully observed and the distribution of R3, R5 and R6 is only dependent 
on the values observed in the incomplete data set, as shown in figure 5(b), data removed with 
this process are UPD. We have considered two different probability mass functions for the 
dummy vectors. For the first set, P(Rk(i)=1)=0.1(i∈{3,5,6}; k= 1,…,Mi), if its two parents have 
the same binary value and P(Rk(i)=1)=0(i∈{3,5,6};k=1,…,Mi), if its two parents take on different 
binary values. For the second set, P(Rk(i)=1)=0.2(i∈{3,5,6};k=1,…,Mi), if its two parents have 
the same binary value and P(Rk(i)=1)=0(i∈{3,5,6};k=1,…,Mi), if its two parents take on different 
binary values. 

c. Only the variables R5 and R6 were subject to the deletion process covered in section 
2. We associated the variables R5 and R6 with a M-dimension (M=min{M5,M6}) dummy feature 
vector R56. Again, we generated a value of the feature vector R56 and removed the kth state rk5 
and rk6 of variables R5 and R6 respectively if the value of Rk(56) was 1. Since the distribution of 
R56 depends on the unobserved values in the data set, as shown in figure 5(c), values removed 
with this process are UCD. We have considered two different probability mass functions for R56. 
For the first set, P(Rk(56)=1)=0.1 (k=1,…,M), if its two parents have the same binary value and 
P(Rk(56)=1)=0 (k= 1,…,M), if its two parents take on different binary values. For the second set, 
P(Rk(56)=1)=0.2 (k= 1,…,M), if its two parents have the same binary value and P(Rk(56)=1)=0 
(k=1,…,M), if its two parents take on different binary values. 
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To evaluate the accuracy and data efficiency of the tolerance MaxG test on unknown 
component distribution, we used the deletion procedures described in section 2. For each 
deletion mechanism, we generated 100 data sets with 1000 instances in which the average 
proportion of unknown components were 5% and 10%. This makes a total of 600 hundreds data 
sets. Using R3 as the target variable, we run stA-IIAMB, stE-IIAMB and our MaxG-IIAMB 
methods. 

As a result, we measure the accuracy from perfect prediction and recall by combining 
precision (i.e. the number of true positives in the output divided by the number of nodes in the 
output) and recall (i.e., the number of true positives divided by the true size of the Markov 
Boundary) as 2 21 (1 ) (1 )precision recall    . Figure 6 shows the accuracy and standard 
deviation values over 100 databases.  

Obviously, the MaxG-IIAMB method yields a higher accuracy in all cases. The benefit is 
more apparent with 10% unknown rate. Interestingly, this is not only true for the UCD 
experiment for which both EM and ACA techniques are biased, but it also holds for UCR and 
UPD. 
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Figure 6. Accuracy and Standard Deviation from Perfect Precision and Recall 
 

 
5. Conclusion 

In this paper, we induced a tolerance constraint-based MB learning method from 
incomplete data. An application on synthetic incomplete data was carried out to illustrate its 
practical relevance and benefit compared to EM and available case analysis techniques. 
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