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Abstract 
The evolutionary learning of fuzzy neural networks (FNN) consists of structure learning to 

determine the proper number of fuzzy rules and parameters learning to adjust the network parameters. 
Many optimization algorithms can be applied to evolve FNN. However the search space of most algorithms 
has fixed dimension, which cannot suit to dynamic structure learning of FNN. We propose a novel 
technique, which is named variable-dimensional quantum-behaved particle swarm optimization algorithm 
(VDQPSO), to address the problem. In the proposed algorithm, the optimum dimension, which is unknown 
at the beginning, is updated together with the position of swarm. The optimum dimension converged at the 
end of the optimization process corresponds to a unique FNN structure where the optimum parameters 
can be achieved. The results of the prediction of chaotic time series experiment show that the proposed 
technique is effective. It can evolve to optimum or near-optimum FNN structure and optimum parameters. 
 
Keywords: fuzzy neural networks,parameters learning,quantum-behaved particle swarm optimization 
algorithm, structure learning,variable dimension 
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1. Introduction 

Fuzzy neural networks (FNN) [1] has the advantage of fuzzy system and neural 
networks, which includes the exact fitting and learning ability of neural networks and the 
powerful knowledge representation of fuzzy logic inference. The learning of FNN consists of 
structure learning to determine the number of fuzzy rules, and parameters learning to adjust the 
FNN’s parameters. Too many fuzzy rules make the network structure become complex and 
have the poor generalization capability and over fitting. Whereas too few fuzzy rules can not 
better fit the network. So it is important to optimize structure of FNN. The parameters learning of 
FNN is a function optimization problem after the structure of FNN is obtained. Many algorithms 
can be applied to optimize the number of fuzzy rules and the parameters learning, such as GA 
[2], particle swarm optimization (PSO) [3] and hybrid algorithm [4, 5]. 

PSO is an evolutionary computation technique developed by Eberhart and Kennedy in 
1995 [6]. However, the algorithm cannot converges to the global minimum point with probability 
one [7]. Jun Sun et al. propose a global convergence-guaranteed PSO, quantum-behaved 
particle swarm optimization (QPSO) algorithm [8, 9, 10], which is inspired in quantum 
mechanics. It has been shown that QPSO is a strong universal optimization technique and can 
be applied in various complicated optimum problem. 

In general, most intelligent algorithms can be applied to a search space with fixed 
dimensions. However the dimension of some optimization problem is dynamic, such as the 
structure learning of FNN. In order to address this problem, we present a novel variable-
dimensional quantum-behaved particle swarm optimization algorithm (VDQPSO), which can 
optimize both the structure learning and parameters learning of FNN. 

The rest structure of this paper is as follows. In section 2, a brief introduction of the 
structure of FNN is presented. PSO, QPSO and the novel algorithm is described in section 3. 



                       ISSN: 2302-4046 

TELKOMNIKA Vol. 11, No. 10, October 2013 : 6216 – 6223 

6217

Next, the structure learning and parameters learning of FNN are depicted in section 4. Then the 
experiment results are given in section 5. Finally, the conclusion is put forward in section 6. 
 
 
2. The Structure of Fuzzy Neural Networks 

The Takagi-Sugeno-Kang (TSK)[11,12] fuzzy inference model of FNN is proposed in 
our technique. Each fuzzy rules corresponds a sub-FNN. The form of the rule jR , which is the jth 

fuzzy rules of first order TSK fuzzy neural network, is as follows: 

jR ： if 1x  is 1 jA  and 2x  is 2 jA … and nx  is njA  

Then 
1

K

j kj k
k

y v 


  

Where ix  and jy  are input and local output variables respectively, ijA  is the fuzzy set of 

input universe with the membership function
ijA , n  is the number of input variables, kjv  is the 

link weight of local output, k  is the trigonometric function of input variables, K  is the number 

of function variables.  
 
 

 
 

Figure 1. The structure of FNN 
 
 
Layer 1, the input layer, transmits input value to the next layer. The output of this layer 

is 1
i iu x . 

Layer 2 is fuzzed layer. Membership function is used to obtain membership value on a 
fuzzy set in this layer. Gaussian function is implemented in our technique. That is 
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   , ijm  and ij  are the mean and variance of the Gaussian function, 

respectively, of the jth term of the ith input variable ix . 

Layer 3 is fuzzy inference layer. The firing strength of corresponding rules is given by 
the output of layer 3. That is 3 2

j ij
i

u u , where 2
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i

u   is multiplication of input variables. 

The output of Layer 4 is 4 3
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  .Where kjv  is the corresponding weight of FNN, 

and k  is a trigonometric function, given by  sin( ) cos( )i i ix x x  . Therefore 3*K n , n  is 

the number of input variables. 
Layer 5 is de-fuzzy layer. In this layer, the node integrates all of above layer output as a 

center of area and de-fuzzy with the expression 
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, where R  denotes the number 

of rules, y  is the output of the FNN model. 
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3. Variable-Dimensional Quantum-Behaved Particle Swarm Optimization Algorithm 
3.1. Quantum-Behaved Particle Swarm Optimization Algorithm 

In PSO algorithm, the population has M particles in the D-dimensional space. Each 
particle represents a potential optimum solution vector in solution space, whose value is 
evaluated by objective function. The position vector and velocity vector of the particle i  at 
generation t are represented as 1 2( ) ( ( ), ( ), , ( ))i i i iDx t x t x t x t   and 1 2( ) ( ( ), ( ), , ( ))i i i iDv t v t v t v t  . 

The particle moves according to the equations: 
 

, , 1 1 , , 2 2 ,( 1) ( ) ( ( )) ( ( ))i j i j i j i j j i jv t wv t c r pbest x t c r gbest x t       
(1) 

 

, , ,( 1) ( ) ( 1)i j i j i jx t x t v t     (2) 

 

Where 1, 2,...,i M , 1,2,...,j D , w  is the inertia weight. 1c and 2c  are called the 

acceleration coefficients. 1r  and 2r  are random number. 1 2( , , , )i i i iDpbest pbest pbest pbest   

denotes the previous best position of particle i  with the name personal best position( pbest ), 

while vector 1 2( , , , )Dgbest gbest gbest gbest   is recorded as the global best particle 

position( gbest ) in the whole swarm. 

The state of particle is depicted by its position vector and velocity vector, which 
determine the trajectory of the particle in PSO algorithm. However in quantum world, the 
position and the velocity of a particle cannot be determined simultaneously according to 
uncertainty principle. Therefore, if individual particles in a PSO system have quantum behavior, 
the PSO algorithm is bound to work in a different fashion. 

In quantum time-space framework, the quantum state of a particle is depicted by wave 
function, instead of position and velocity. Inspired PSO in quantum mechanics, Jun Sun et al. 
proposed QPSO. The equations are as follows: 

 
(1 )i ip pbest gbest       (3) 

 

1

1 M

i
i

mbest pbest
M 

 
 (4) 

1
( 1) ( ) *ln( )i i ix t p mbest x t

u
   

 (5) 
 
Where  and u are random number uniformly distributed in (0,1) . ip is called local 

attractor. mbest is mean best position of the population.Parameter  is called the contraction-

expansion coefficient. In the process of iteration,   is decided by the random number, when it is 
bigger than 0.5, minus sign (－ ＋) is proposed, others plus sign ( ) is proposed. 

 
3.2. Variable-Dimensional QPSO 

The major drawback of basic and some improved QPSO algorithms is that the 
dimension of search space is fixed. In many optimization problems, the optimum dimension is 
dynamic. In order to address this problem, we present a variable-dimensional QPSO (VDQPSO) 
technique, which negates the need of fixing the dimension of the solution space in advance [13]. 
The VDQPSO can seek the best dimension and the best position on the optimum dimension in 
optimum process. 

In VDQPSO, as an optimum objective, the dimension is updated together with the 
position of the particle. In order to accomplish this, each particle has two sets of components. 
The first one is the position of the particle in D-dimensional search space. The second one is a 
positive integer N , which denotes the dimension of the particle, limited in the range 
[ , ]Nmin Nmax . The two components, each of which has been subjected to two independent and 

consecutive processes, have its personal best position ( pbest ). Accordingly, the first process is 
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positional QPSO. It means the standard QPSO positional shifts in D-dimensional search space. 
Each particle records its last position and personal best position on the given dimension so that 
this information can be used when it revisits the same dimension at a later time. The second 
process is dimensional QPSO. In this process, the dimension of each particle can be chose 
freely in the particular range. The particle will remember its current positional status and keep 
up the positional QPSO process on the new dimension.  

 In VDQPSO, the characteristics of each particle i  at generation t  in the swarm X  are 
represented: 

( )idx t : the dimension component of particle i  at generation t . 

( )idpbest t : the personal best dimension component of particle i  at generation t . 

( )dgbest t : the global best dimension at generation t . 
( )

, ( )idx t
i jxx t : the jth dimension of the position of particle i  on dimension ( )idx t . 

( )
, ( )idx t

i jxpbest t : the jth dimension of the personal best position of particle i  on dimension 

( )idx t . 

( )d
jxgbest t : the  jth dimension of the global best position of swarm on dimension d . 

At generation t , the positional components update of particle i  is performed on its 
current dimension ( )idx t , and then the dimensional components are updated to determine the 

next dimension ( 1)idx t  . The equations of positional update are as follows: 

 

(1 )i i idx dx dx
i ixp xpbest xgbest       (6) 

 

1

1
i i

M
dx dx

i
i

xmbest xpbest
M 

   (7) 

 

( ) ( ) 1
( 1) ( ) * ln( )i i i idx t dx dx dx t

i i ixx t xp xmbest xx t
u

     (8) 

 

Note that the particle’s new position ( ) ( 1)idx t
ixx t  will still be on the same dimension 

( )idx t . The particle may move to another dimension with the update of the dimension. However 

the equation of the dimensional QPSO need to improve because the dimension must be an 
integer. The equations are as following in our method: 

 
(1 )i idp dpbest dgbest       (9) 

 

1

1 M

i
i

dmbest dpbest
M 

   (10) 

 
1

( 1) ( ) *ln( )i i idx t dp dmbest dx t
u

      
 (11) 

 
where     is the floor operator. 

For the swarm, firstly, the global best position xgbest  is recorded in positional QPSO. 

Then in dimensional QPSO, the global best dimension ( dgbest ) is achieved by comparing the 

fitness score of each particle to each other on its personal best dimension. The positional QPSO 
process alternates with dimensional QPSO process until the VDQPSO process terminates. 
Finally, the optimum solution xgbest  on the optimum dimension dgbest  will be achieved. 

 
 

 



TELKOMNIKA  ISSN: 2302-4046  

Fuzzy Neural Networks Learning by Variable-dimensional Quantum-behaved … (Jing Zhao) 

6220

4. The Structure Learning and Parameter Learning of FNN 
In this section, we apply the VDQPSO technique to evolve the fuzzy rules and 

parameters of FNN. Figure 2 represents the coding of a particle. Where i  and j  are the ith 

input variable and the jth rule. R  denotes the number of rules. Suppose the length of each rule 
is RS, and the initialization swarm is X(popsize, dimension). Where popsize and dimension is 
the size and dimensions respectively in swarm X . Thus dimension R RS  , Rmin R Rmax  . 
Rmin  and Rmax  are the minimum and maximum of rules of FNN. 

 
 

 
 

Figure 2. The coding structure of a particle 
 
 

In VDQPSO, the number of rules update instead of the dimensional update for FNN is 
recorded. The process is described step-by-step as follows. 

Step 1 Initialization phase. Firstly, initialize the number of rules dx  and the particles’ 
position xx . Then the best personal dimension dpbest , the global best dimension dgbest , the 

best personal position xpbest  and the global best position xgbest  are initialized too. 

Step 2 Update the particles’ position used equation (6), (7) and (8). 
Step 3 Update the particles’ dimension used equation (9), (10) and(11). 
Step 4 Evaluate the fitness function value of each particle in its corresponding rules. In 

the particular rules, if the new score is better than previous positional score, then update xpbest  

and xgbest . If the new score is better than previous dimensional score, then update dpbest  and 

dgbest . 

Step 5 Repeat Step 2-4 until stop criterion is satisfied. 
 
 
5. Simulation Examples and Its Results 
5.1. Prediction of Chaotic Time Series 

In order to test and evaluate the proposed technique, the prediction of the chaotic time 
series, a benchmark problem, is performed. The chaotic time series is generated by chaotic 
Mackey-Glass [14] differential equation defined as follows: 

 

10

( ) 0.2 ( )
0.1 ( )

1 ( )

dx t x t
x t

dt x t





 

 
 (12) 

 
Mackey-Glass equation is called the function of the time delay parameter  . It 

produces chaotic behavior with 16.8  , so 17   is adopted in our technique. The prediction of 
the chaotic time series is to use past values of the time series up to time t  to predict the value 
in the future t p . The standard of prediction is to create a mapping from S  points of the time 

series spaced ∆ apart, that is [ ( ( 1) ), , ( ), ( )]x t S x t x t     , to a predicted future value ( )x t p . 

4S   and 6   are used usually. The fourth-order Runge-Kutta method is applied to obtain the 
time series value at each integer time point. From the time series ( )x t , 1500 input-output data 

pairs are extracted to test the novel algorithm performance. The format of the series is 
[ ( 18), ( 12), ( 6), ( ); ( 6)]x t x t x t x t x t    . Where (0) 1.2x  . There are four input variables and one 

output in the FNN model. Divide the data pairs into 3 cross-validation groups, each group have 
1000 data pairs. The first group is [ (1) (1000)]x x . The second group is [ (251) (1250)]x x , and 

the third group is [ (501) (1500)]x x . The first 500 data pairs are used as the training data set, 
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while the remaining 500 pairs are the testing data set to validate the novel method. The fitness 
function of the series is defined as the following formula: 

 

2

1

1
( )

H

h h
h

F y y
H 

   (13) 

 

Where hy is the hth model output, hy  represents the hth desired output, and H is the 

number of training data. 
 

5.2. Parameters Setting of Algorithm and Results Discussions 
In this section the effectiveness of the novel algorithm is illustrated. The algorithm 

parameters setting are described as follow: In our technique, the value of   varies from 1.0 to 

0.5 linearly. 2Rmin   and 12Rmax  are proposed. The swarm size is set to 50. The number of 
function variables 3* 4 12K    is defined. The maximum generation is set to 2000. Because of 
the stochastic characteristic of VDQPSO algorithm, the experiment is run 10 independent times. 

Firstly, we choose the data group 2 randomly to determine the number of fuzzy rules. 
Then the first 500 data pairs of data group 2 are set used to simulate the results as the training 
data set. The iterative process of the number of rules, minimum errors, xgbest  and dgbest  are 

keep track of in the VDQPSO implementation process. Table 1 records the dgbest  at the end of 

each iterative process. The optimum dimension is the number that is repeated most often in 
Table 1. Then the determined number of rules is used to validate the performance of the novel 
technique on data group 1 and data group 3 so that the results can be achieved. As can be 
seen from Table 1, the number 6, 7 and 11 are selected two times. The errors of VDQPSO, 
called the best Root Mean Square (RMS) error, between predictive value and the actual value 
are reported in our experiment over 2 times of running. 

The selection process of rules are illustrated in Figure 3, Figure 4 and Figure 5. In Table 
2 the minimal training data RMS error, corresponding testing data RMS error and the average 
RMS error on three data groups are given. Figure 6, Figure 7 and Figure 8 illustrate respectively 
the convergence process of average RMS error with different number of rules on three data 
groups. The graph of predictive value and actual value on data group 1 is presented in Figure 9. 
The detailed graph of the circle on the Figure 9 is described in Figure 10. 

From Table 2, Figure 6-10 we can obtain some analysis results. As can be seen from 
Table 2, the minimum and average RMS error are increasing with the augment of number of 
rules on three data groups in general. However the performance on data group 1 and data 
group 3 with 7 rules is superior to other number of rules. As is illustrated in Figure 6 and Figure 
8, it makes no difference to the RMS on data group 1 and data group 3 whether the number of 
rules is 6 or 7.  In Figure 7, the result with 7 rules outperforms the result with 6 rules and 11 
rules On data group 2. Note that the worst performance on all data group is that the number of 
rules is 11. It means that too many number of rules result in too many errors. As is can be seen 
from the detailed graph, the fitting effect with 7 rules out perform others. However in some 
generations, the result with 11 rules is the best.  

All the experimental results show the effectiveness of the proposed VDQPSO. 
 
 

Table 1. The number of rules 
Number of run Number of rules Number of run Number of rules 

1 6 6 7 
2 11 7 7 
3 11 8 2 
4 6 9 9 
5 8 10 5 
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Table 2. The RMS error 
Number of rules Data   sets Data1 error Data2 error Data3 error Average error 

6 
Training 0.0231 0.0226 0.0191 0.0216 

Test 0.0229 0.0230 0.0196 0.0218 

7 
Training 0.0215 0.0251 0.0184 0.0217 

Test 0.0215 0.0260 0.0193 0.0223 

11 
Training 0.0306 0.0328 0.0271 0.0302 

Test 0.0311 0.0335 0.0270 0.0305 
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Figure 3. The selection process of rule=6 
 
 

 
Figure 4. The selection process of rule=7 
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Figure 5. The selection process of rule=11 

 

 
Figure 6. The convergence graph of average 

RMS on data group 1 
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Figure 7. The convergence graph of average 

RMS on data group 2 

 
Figure 8. The convergence graph of average 

RMS on data group 3 
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Figure 9. The graph of predictive and actual 

value on data group 1 

 
Figure 10. The detailed graph of circle on 

Figure 9 
 
 
6. Conclusion 

In all kinds of optimization algorithms, the dimension of the search space must be fixed 
in advance. However the structure learning of FNN is a dynamic process. It is difficult to 
determine the proper number of fuzzy rules in advance. In this paper, we propose a novel 
evolutionary method named variable-dimensional quantum-behaved particle swarm optimization 
algorithm (VDQPSO) for structure and parameters learning of FNN. The novel technique 
promises an especial solution to address the above drawback. In VDQPSO, the dimension of 
the particle, i.e. the number of fuzzy rules, which is regarded as an optimization objective, is 
updated together with the position of the particle. At last, all the particles can converge to the 
global solution on the optimum dimension in a simultaneous way. Experimental results show 
that the proposed method is effective. 
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