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Abstract 
During routine inspecting, mobile robot may be requested to visit multiple locations to execute 

special tasks occasionally. This study aims at optimal path planning for multiple goals visiting task based 
on tailored genetic algorithm. The proposed algorithm will generate an optimal path that has the least idle 
time, which is proven to be effective on evaluating a path in our previous work. In proposed algorithm, 
customized chromosome representing a path and genetic operators including repair and cut are developed 
and implemented. Afterwards, simulations are carried out to verify the effectiveness and applicability. 
Finally, analysis of simulation results is conducted and future work is addressed. 
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1. Introduction 
Mobile robots have been developed for many practical tasks such as automatic 

patrolling in a transformer substation [1, 2], welding automatically in a production line [3] and 
guiding in a campus [4]. For all the applications, optimal path planning plays an important role in 
navigating robot to execute missions [5]. In recent years, the important issue of optimal path 
planning has attracted enormous attentions.  

Generally, path planning is to find a suitable collision-free path from a start point to a 
designated goal [6]. However, in different applications, there are other four cases of path 
planning according to the number of robots, start points and goals: (i) One robot starts from a 
point, and chooses a goal from multiple candidate goals to move to [1]; (ii) One robot moves 
from a start point and arrives at a destination while during this course, it must visit parts of the 
specified goals [7]; (iii) Multiple mobile robots leave from the same start point and go towards 
the same goal [8]; (iv) Multiple robots start from different initial points and move to different 
goals [9]. In this study, we will solve the problem that a robot starts from a point and traverses 
the specified goals. Compared with similar research on this problem, a unique speciality is that 
no priority and order are made for goals to be visited. 

The optimal path planning task can be described as an optimization problem in which a 
single objective or multiple objectives are employed. Among researches on optimal path 
planning, mainly path length is used for evaluating a path [10]. However, when various features 
of outdoor environment are considered such as friction and gravity, other criteria including 
energy consumption, moving time are proposed for determining an optimal path [11, 12]. In 
previous study on optimal path planning, by considering road attributes including length, road 
grade, surface roughness and the set of speed control hump, we proposed the decision factor—
idle time (non-working time) as the cost of a path, which is proven to be more comprehensive on 
evaluating a path [1]. In this study, idle time is employed to evaluate the path. 

Many researches have concerned on optimal path planning and many conventional 
techniques including potential field method, visibility graph and Voronoi roadmap are used [13]. 
Recently, various kinds of artificial intelligence methods like genetic algorithms, neural networks, 
fuzzy logic method, particle swarm optimization and ant colony optimization have been 
proposed for optimal path planning [14]. In this work, Genetic algorithm (GA) is adopted and 
tailored to solve concrete problem. GA is an evolutionary optimization method and is proven to 
perform well in optimal path planning [15-17]. To use GA, one should first find a pattern to 
express the feasible solutions, which is called chromosome. Besides, it is necessary to create a 
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fitness function to evaluate each solution. The most challenging work is developing some 
appropriate genetic operators acting on the population of each generation that is the set of 
solutions. After evolving by certain generations, the optimal one will be determined by a 
criterion. In many occasions, researches use fixed-length chromosome to represent a path [18]. 
While in other circumstances, chromosomes with variable length are used [19, 20]. Meanwhile, 
different forms of fitness functions are created due to the fact that different objectives should be 
considered in respective application, such as path length [10] and time [11]. The key for 
evolution are genetic operators. Traditionally, three operators, i.e., selection, crossover and 
mutation are utilized almost in all applications [20]. Apart from them, customized genetic 
operators are often established according to different purposes. For example, to make a 
feasible solution better, operator improvement is designed, which will randomly choose a node, 
and search in neighboring grids of the node, and move it to a better location [19]. Various 
customized operators have enlarged the field of application of GA-based method vastly. 

In this paper, for the multiple goals visiting task, we proposed a tailored genetic 
algorithm to find an optimal path. This section has summarized related work and introduced our 
research. The remainder of this paper is organized as follows: in section 2, we will state the 
problem including the model of work environment, the multiple goals visiting task and properties 
of a path. In section 3, tailored genetic algorithm is described in detail. Then, simulations and 
analysis of results are conducted in section 4. Finally, conclusion and future work are 
addressed. 

 
 
2. Problem Formation 
2.1. Work Environment 

A graph-based topological map is used to describe the work environment [1], which is 
illustrated in figure 1.   

 
 

 
 

Figure 1. Model of work environment 
 
 
Let V  be the environmental space, which includes three parts, namely: 
P : The set of path segments. In figure 1, ( )mP i.e., m = 0,1  represents a path segment 

and for each one, four attributes are considered, i.e., path length mlp surface roughness mrp , 

road grade mgp and the set of speed control hump mhp . Especially, the segment with shadow 

implies that it is a rough segment. 
N : The set of nodes connecting path segments. It involves four types of nodes, i.e., 

general node, start point, goal and charging station. For example, A  to H are general nodes 
connecting two or more path segments respectively. We use (  0, 1)hD i.e. h =  to represent 

charging stations placed in the environment. In a concrete mission, if any one node is 
designated to visit, it is called a goal, and the position where the robot starts from is called the 
start point. Since each segment has two nodes, a segment can be also represented by nodes. 
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For example, in figure 1, segment 0 P can be also represented as GFP  if in one path the robot 

moves from node G  to F , or FG P from F  to G . 

O : The set of obstacle regions. In figure 1, the regions with oblique lines represent 
obstacle areas. 

Thus we can describe the environment as ={ }V P,O,N . 

In previous work [1], we have elaborated the cost of a path segment. The cost that the 
robot will pay for passing each segment includes two parts: energy ec  and the influence of 
vibration on robot body bc . We use ( , )e bC c c  to describe the cost of each path segment. 
Furthermore, the calculation of ec and bc  is  

 

_ _ˆ ( ) (Δ cos( ) Δ sin ( )+ )e e s e s ml e r mr mg e g mg s mlc c c r r p r p p r p r p= + = + = +  (1) 

 

_ _( / )
fb b μ f mr ml mh b hc r μ ηp p p r= +  (2) 

 
where ˆec is the energy used for moving and sc  is the energy that consumed by sensors on robot. 
By using ec  and bc , the idle time is computed as 

 
( , ) /IDLE e b e charge b MTTRT f c c c v c T= = +  (3) 

 
where chargev  is the charging speed and MTTRT  is used to describe the Mean Time To Repair 

(MTTR) of the robot. Details of derivation of these formulations and descriptions of other 
parameters are not expected to shown in detail in this paper since they are available in [1]. 
 
2.2. Path Plannign for Multiple Goals Visiting (PPMGV) 

Normally when performing regular inspecting task, the robot moves in accordance with 
predefined route in the environment. Occasionally, the robot may be asked to go to multiple 
goals to execute particular missions. For example, in Fig. 2, when the robot is at location S , it is 
commanded to visit 1G , 2G and 3G  temporarily.  The robot can select the path coloured in blue 

to visit all the goals. Thus, the sequence of goals visited is 1 2 3G G G® ® , for which we use 

1 1 2 3Γ { , , , , , }S A G G D G=  to describe the path. However, the robot may choose visiting 3G  before

2G , then the sequence becomes 1 3 2G G G® ® , and subsequently we get another feasible path 

2 1 3 2Γ { , , , }S G G G=  that is coloured in red. The optimal path planning for multiple goals visiting is 

to find the optimal one in all the accessible paths. 
 
 

 
 

Figure 2. Task of multiple goals visiting 
 
 
2.2. Properties of A Path 

In this work, the path is represented by nodes, and four properties of each path are 
obtained: 

(1) A path is constituted of part of the nodes. For example, the path colored in blue in 
Figure 2 can be described as 1 1 2 3Γ { , , , , , }S A G G D G= . This path is constituted by nodes 

1 2, , , ,S A G G D  and 3G  in which 1 2,G G and 3G  are the goals assigned. 
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(2) There is no priority or constraint for the sequence of goals to be visited. For 
example, in Figure 2, both paths 1 1 2 3Γ { , , , , , }S A G G D G=  and 2 1 3 2Γ { , , , }S G G G=  are valid for 

visiting goals 1 2,G G and 3G . 

(3) It is permissible for a node appearing in the sequence more than once. For instance, 
in Figure 3, one available path is 1 2 4 3Γ { , , , , , , }2S G S G G G G= , where S  and 2G  both appeared 
twice. The purpose of the first arrival at one goal is to perform task, and that of the other times 
are for going to other goals. 
 
 

 
 

Figure 3. A special situation 
 
 

3. Proposed Tailored Genetic Algorithm 
Based on traditional genetic algorithm, modifications are made to fit our problem. We 

use the combination of nodes to represent the chromosome. We use idle time to evaluate a 
path. Except the basic three operators, i.e., Selection, Crossover and Mutation, we create two 
operators: Repair and Cut. 
 
3.1. Chromosome 

The proposed tailored genetic algorithm uses the combination of nodes for path 
representation. An example of path encoding is shown in Figure 4, which is

1 2 3S A G G D G- - - - - . In this chromosome, S  is the start point, A and D  are general nodes, 
and 1G , 2G and 3G  are three goals. 

Two different chromosomes may have different length. For example, the length of the 
chromosome shown in figure 4 is 6, in which 3 goals are involved. While the length of the 
chromosome in figure 2, 1 3 2S G G G- - - , is 4, and the same 3 goals are included. 

 
 

1 2 3S A G G D G    

start point general nodes goals
 

 
Figure 4. An example of chromosome 

 
 
3.2. Evaluation of Path 

Chromosomes are selected for reproduction through genetic operators based on the 
fitness function, so it is important to establish a set of criteria to evaluate the quality of a path. 
For each chromosome, we adopt 

IDLETF to evaluate it, where 
IDLETF  indicates the idle time 

induced by this path. The total energy consumption of a path is the sum of that of each path 
segment, so 

1

( )
IDLE

H

T IDLE i
i

F T P
=

= å  (4) 
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where H  is the number of segments and (i)IDLET  is the idle time of the thi segment iP . For 

example, for the individual 1 2 3S A G G D G- - - - -  shown in figure 4, we have 

 

1 1 2 2 3
( ) ( ) ( ) ( ) ( )

IDLET IDLE SA IDLE AG IDLE G G IDLE G D IDLE DGF T P T P T P T P T P= + + + +  (5) 

 
3.3. Genetic Operators 

In proposed genetic algorithm, except the three basic operators, i.e., selection, 
crossover and mutation, we create two other operators, i.e., repair and cut. 

(1) Selection. The selection operation includes two steps. First, by using the strategy 
“elitism”, the best chromosome is found out and kept in the population of the next generation. 
This mechanism is helpful for finding the global optimal solution. The selection process is based 
on the fitness value. The best one that has the minimal 

IDLETF will be selected to remain in the 

next generation. This strategy can guarantee that the best one up to now will not be destroyed 
by other genetic operations and can accelerate the convergence of the algorithm. 

(2) Crossover. Crossover is an efficient way to add diversity to the population. Firstly, a 
crossover probability is predefined. In this operation, two parents are selected randomly and a 
position is selected randomly too. Then, a random probability is generated. If the probability 
value is less than the predefined value, the operation will go on. Otherwise, the two parents are 
passed to the next generation directly. The operation will end until certain times of crossing 
operations are carried out. 

The following is an example of crossover operation. First, two parents are selected: 
Parent 1: 1 3 2S G G G- - -  

Parent 2: 1 2 3S A G G D G- - - - -  

If point 1G  is selected as the position for exchanging, then we get the offspring after 

crossing: 
Child 1: 1 2 3S G G D G- - - -  

Child 2: 1 3 2S A G G G- - - -  

After crossing, the two children are put into the population of next generation. 
(3) Mutation. In mutation operation, a position is randomly chosen and the node at this 

position is replaced with a different node. Mutation is served as a key role to diversify the 
solution population. Therefore, it is not necessary that a solution is better after mutating. After 
mutating, this node may not be connected directly with the two nodes before and after. For 
example, if node A  in path 1 2 3S A G G D G- - - - -  shown in Figure 2 is chosen to mutate, and 
changes to C , then, this individual becomes 1 2 3S C G G D G- - - - - . However, as seen in 
Figure 2, nodes S  and C , and C and 1G  are not connected directly, which is to say, the 
individual after mutation is not a feasible solution. Even so, it has made the population 
diversified, and the following operator repair can make it feasible. 

(4) Repair. When executing genetic operators, some infeasible paths may appear. For 
instance, after mutation, individual 1 2 3S A G G D G- - - - -  becomes 1 2 3S C G G D G- - - - - , 
while nodes S  and C , and C and 1G  are not connected directly. When this happens, we will 
use repair operator to solve this problem. The practical way is inserting some suitable nodes 
between the two nodes.  

Take string 1 2 3S C G G D G- - - - -  as an example. We first check if this individual is 
feasible by examining every two adjacent nodes. If at a position, the node and the next node are 
not connected directly, then, this operator will try to add some nodes between them in order to 
make the two connected reasonably. In the above example, the nodes S and C  may be 
inserted by node A , and then C and 1G  may be inserted by nodes 2G  or A , which is decided 
randomly. If A  is selected, then the individual is repaired to be 1 2 3S A C A G G D G- - - - - - - , 
and if 2G is selected, it will become 2 1 2 3S A C G G G D G- - - - - - - . No matter whichever is 
chosen, the result is that the path becomes feasible at last. 

(5) Cut. In a chromosome, it is admissible that any node appears more than one time. 
But the unnecessary reduplication must be avoided. For example, in the string 

1 2 3S A C A G G D G- - - - - - - obtained after repairing, node A  appears twice and between 
them there is no goal. It can be regarded as that between the two times arriving at A , the 
intention is not for going to any goal. So, the sequence C A- is meaningless and it needs to be 
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cut. Finally, this string becomes 1 2 3S A G G D G- - - - - . Therefore, the cut operator is to do 
such things that cutting the unmeaning sequences existing in each individual. However, the 
reduplication does not include the situation that a goal exists between the same two nodes. For 
instance, in chromosome 2 1 2 3S A C G G G D G- - - - - - - , 2G  appears twice. But between 
them there is another goal 1G  which indicates that the purpose of arriving at 2G  for the second 
time is for visiting another goal. Thus, the second time passing 2G  is meaningful. 

 
 

4. Simulation Studies 
4.1. Simulations and Results 

We use the topological map shown in Figure 5 in simulations, which is built in previous 
work [1]. There are 23 path segments and 17 nodes in the environment. In addition, the 
attributes of each segment are also listed out in [1]. In simulations, parameters in the proposed 
genetic algorithm are set as follows: the population size is 30, and the maximum evolution 
generation is set to be 100, crossover rate 0.9cP =  and mutation rate 0.001mP = . 

 
 

 
 

Figure 5. Topological map of environment 
 
 
(1) Simulation I. In this simulation, node A  is set as the start point, and the goals are 

N , O and Q . We list out the detailed value of idle time of the best one in each generation in 

table 1 and show them in Figure 6. It is obtained from the result that the optimal solution comes 
out in the 23rd generation. The optimal path is A B N M O C Q- - - - - - and its idle time 

855.075562
IDLETF s= .The order of visiting is N , O and Q . The computational time is measured to 

be 145ms. 
 
 

Table 1. Details of Best Individuals in Each Generation 
Generation Best individual ( )

IDLETF s  

1-4 A B C O C Q C O M N- - - - - - - - -  1293.958740 

5-8 A L M O C D E Q C B N- - - - - - - - - -  1283.412720 

9-13 A B C O M N B C Q- - - - - - - -  1092.191162 

14-16 A B N M O C D E Q- - - - - - - -  1025.964884 

17-20 A B N B C Q C O- - - - - - -  946.653320 

21-31 A B N M O P Q- - - - - -  884.662598 

32-100 A B N M O C Q- - - - - -  855.075562 
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Figure 6. Results of simulation I 
 
 

 
(2) Simulation II. In this test, A  is the initial point, and goals are J , O , P and Q . We 

conduct the computation twice, and the results are shown as case 1 and case 2 in Figure 7. In 
case 1, the optimal solution appears in the 86th generation, and in case 2 it comes out in the 98th 
generation. At last we get the same optimal path is A B C Q C O P J- - - - - - -  and its idle 

time is 1043.175903s. Thus the goals are visited in the order of Q , O , P and J . The 

computational time is 157 ms and 153ms respectively. 
 

 

 
 

Figure 7. Results of simulation II 
 
 

4.2. Discussion of Simulation Results 
In the two simulations, we implement our proposed tailored genetic algorithm to find the 

optimal path for multi-goal visiting task and finally optimal solutions are obtained. In the following 
we will discuss about the similarity and differences between each case and evaluate the 
proposed genetic algorithm based on simulation results.  

(1) As the genetic algorithm is a kind of stochastic, evolutionary search method, the 
optimal solution obtained at the end may be not the global optimal one truly, but converges to. 

(2) In the two cases above, the speed of converging to the optimal solution is different. 
For example, the optimal one appears in the 32rd generation in simulation I, while it is obtained 
in the 86th and 98th in two cases in simulation II. 
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(3) The computational time in two simulations are 145ms, 157ms and 153ms 
respectively, which shows great efficiency in computation. However, there are only 23 path 
segments with 17 nodes in the environment. To verify the timeliness and efficiency, a more 
complicated environment needs to be constructed and more simulations are required. 

(4) When using GA method, the stop condition can be either that the best solution 
keeps unvaried for certain generations, or that the current maximum generation is exceeded 
[21]. In proposed genetic algorithm, the latter one is adopted. However, in reality, both can not 
ensure that the final solution is truly the optimal one, and therefore it is uncertain that which one 
is better absolutely. For instance, in case 2 of simulation II, the solution generated in the 9th 
keeps the best in the following 89 generations. If we use the former criterion, and set the 
maximum generation to be 80, it will be regarded as the final optimal path. However, it is soon 
replaced by a better solution. For the latter criterion, if we set the maximum generation as 90, 
then in case 2 we can not get the optimal one that is obtained in case 1. 

 
 

5. Conclusion 
We have proposed a novel tailored genetic algorithm to plan an optimal path for the 

multi-goal visiting task. According to the particularity of the problem, special form of 
chromosome is used to represent the path and customized genetic operators are developped. 
The effectiveness of the method is verified by simulations. Furthermore, through analysis of 
simulation results, evaluation on our proposed method is addressed, which is useful for wider 
implementation in various circumstances. Further, we will creat more complicated environments 
to verify and modify the algorithm. In addition, the comparison with other research is considered 
as an important work to be conducted. Moreover, we will consider the situation that the robot 
has limited energy, and therefore, both it and idle time should be employed to evaluate the path. 
 
 
References 
[1] Liu F, Liang S, Xian XD. Determination of An Optimal Return-path on Road Attributes for Mobile 

Robot Recharging. IJARS. 2011; 8(5): 83-92. 
[2] Wang KZ, Liang S, Bi HB, Xian XD. Implementation of a robot inspection system for substation 

equipment based on pioneer 3-at. ICIC Express Letters. 2010; 4(5): 1-6. 
[3] Madsen O, Sφrensen CB, Larsen RL, Overgaard L, Jacobsen NJ. A system for complex robotic 

welding. Industrial Robot: An International Journal. 2002; 29(2): 127-131. 
[4] Thrapp R, Westbrook C, Subramanian D. Robust localization algorithms for an autonomous campus 

tour guide. Proceedings of IEEE International Conference on Robotics and Automation. 2001: 2065-
2071. 

[5] Raja P, Pugazhenthi S. Optimal Path Planning of Mobile Robots: A Review. International Journal of 
Physical Sciences. 2012; 7(9): 1314-1320. 

[6] Yuan M, Wang SA, Wu C, Chen N. A Novel Immune Network Strategy for Robot Path Planning in 
Complicated Environments. Journal of Intelligent & Robotic Systems. 2010; 60(1): 111-131. 

[7] Shibata T, Fukuda T. Intelligent Motion Planning by Genetic Algorithm with Fuzzy Critic. International 
Symposium on Intelligent Control. 1993: 5-10. 

[8] Yang SX, Hu Y. A Knowledge Based GA for Path Planning of Multiple Mobile Robots in Dynamic 
Environments. IEEE International Conference on Robotics and Automation. 2007: 71-76. 

[9] Mansouri M, Shoorehdeli MA, Teshnehlab M. Path Planning of Mobile Robot Using Integer GA with 
Considering Terrain Conditions. IEEE International Conference on Systems, Man and Cybernetics. 
2008: 208-213. 

[10] Hellstrom T, Ringdahl O. Real-time path planning using a simulator-in-the-loop. International Journal 
of Vehicle Autonomous Systems. 2009; 7(1/2): 56-72. 

[11] Wang HF, Yang YZ. Time-optimal Trajectories for a Car-like Robot. Automatica. 2008; 34(4): 445-
452. 

[12] Sun Z, Reif JH. On Finding Energy-Minimizing Paths on Terrains. IEEE Transaction on Robotics. 
2005; 21(1): 102-114. 

[13] Garcia MAP, Montiel O, Castillo O, Sepúlveda R, Melin P. Path planning for autonomous mobile robot 
navigation with ant colony optimization and fuzzy cost function evaluation. Applied Soft Computing. 
2009; 9(3): 1102-1110. 

[14] Ahmed F, Deb K. Multi-objective optimal path planning using elitist non-dominated sorting genetic 
algorithms. Soft Computing. 2012:1-17. 

[15] Wang YH, Chi N. Path planning optimization for teaching and playback welding robot. Telkomnika. 
2013; 11(2): 960-968. 



TELKOMNIKA  ISSN: 2302-4046  
 

 
Optimal Path Planning for Mobile Robot Using Tailored Genetic Algorithm (Shan Liang) 

9

[16] Konak A, Coit DW, Smith AE. Multi-objective optimization using genetic algorithms: A tutorial. 
Reliability Engineering. 2006; 91(9): 992-1007. 

[17] Yan XS, Wu QH, Liu HM. An improved robot path planning algorithm. Telkomnika. 2012; 10(8): 1948-
1955. 

[18] AL-Taharwa I, Sheta A, Al-Weshah M. A Mobile Robot Path Planning Using Genetic Algorithm in 
Static Environment. Journal of Computer Science. 2008; 4(4): 341-344. 

[19] Yang SX, Hu Y, Meng MQ. A Knowledge Based GA for Path Planning of Multiple Mobile Robots in 
Dynamic Environments. IEEE International Conference on Robotics and Automation. 2007: 71-76. 

[20] Mansouri M, Shoorehdeli MA, Teshnehlab M. Integer GA for Mobile Robot Path Planning with using 
another GA as repairing function. Proceedings of the IEEE International Conference on Automation 
and Logistics. 2008:135-140. 

[21] Zitzler E, Laumanns M, Bleuler S. A Tutorial on Evolutionary Multi-objective Optimization. 
Evolutionary Computation. 2004; 535(5): 3-37. 

 


