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Abstract 
   Given the current limitations in fuzzy clustering metric, the aim of this paper is to present new 

wasserstein metric based adaptive fuzzy clustering methods for partitioning symbolic interval data. 
Wasserstein metric shows adavantages in digging distribution information in symbolic interval data. 
Besides, the proposed fuzzy clustering methods also emphasize correlation structure between indices. 
Based on it, fuzzy partitions and prototypes for clusters are determined by optimizing adequacy criteria. 
Finally, the applicability and effectiveness of the proposed methods are validated through experiments with 
synthetic data sets. 
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1. Introduction 

SDA (Symbolic Data Analysis) is a new research field in knowledge discovery and data 
management, and is closely related with multi-dimensional data analysis, pattern recognition 
and artificial intelligence. It aims to use appropriate methods to analyze, dig implicit information 
in different symbolic data. Fuzzy clustering is an important branch of fuzzy pattern recognition, it 
is an unsupervised pattern recognition method, and was widely used in many fields. At present, 
fuzzy clustering method is generally divided into 5 categories in the international academic 
research: clustering method based on similarity relation, clustering method based on objective 
function, based on the transitive closure of fuzzy relation, clustering neural network and 
clustering method based on advanced algorithm. With the development of computer and the 
actual problem, clustering method based on objective function has become the mainstream of 
fuzzy clustering method. Many scholars have made a useful research. Souza, De Carvalho and 
Diday [1-3]  respectively use city-block distance, Hausdorff distance and the Euclidean distance 
to study the fuzzy clustering of interval data. The three distance formula above are often used in 
clustering algorithm. But the distance above give too much emphasis to endpoints of interval 
data, and neglect concentration and discrete distribution of data, the results may be easy to lose 
information in data distribution. In this paper, we will be the first study of fuzzy clustering using 
wasserstein measure into interval data, and through the CR index contrasted with other 
methods, we get the superiority of the method. Research also shows that, if we pay equal 
attention to indices of interval data, we may ignore the index itself and the inherent correlation 
structure between indices. In this paper, the first and the second part introduce constraint 
relationship between indices, and give fuzzy clustering theory model of single index and double 
index of interval data based on wasserstein measure. The third part identify the relevant 
methods through simulation experiment and get advantages compared with prior classic 
methods. Finally gives the conclusion and the improvements discussed. 

 
 

2. The Proposed Method  
2.1. Wasserstein Metric 

If random variables X  and Y have distribution functions ( )X and ( )Y  

respectively, then the wasserstein 2L  metric is defined as follows: 
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Where 1   and 1   are the inverse functions of the two distributions. 
In 1999, the distance is extended to wasserstein metric by Barrio [4]. 
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In 2007, based on the first moment, and two moments of distribution functions, the 

wasserstein metric is decomposed by Irpino and Romanoas [5] follows: 
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The wasserstein metric takes comprehensive consideration of three factors: first, the 

center position (Location): two distribution functions may differ in position, wasserstein metric 

uses the mean difference description. Secondly, wasserstein metric use s QQ tandard 

deviations and correlation coefficent  to describe fluctuation difference between size and shape. 

Notablly, the correlation coefficent QQ  is different from traditional Pearson correlation 

coefficient. QQ measures the difference of density function shape. QQ =1, if and only if the 

two standardized distribution function is the same. Compared with the traditional city-block 
distance, Hausdorff distance and Euclidean distance, wasserstein metric is no longer focused 
on the endpoint, but to capture the data distribution information, consider the center of 
distribution and fluctuation difference, so can fully use the information provided by distribution 
function. 

In this paper, we assume a uniform distribution of X  and Y  in a range of interval, then 
the wasserstein metric of interval ],[ baX   and interval ],[ vuY   is defined as follows: 

 

2 2( ( , ) ( , )) ( ) ( )X Y X Yd U a b U u vw       ，                              (5) 
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For the p -dimension interval variables, the above formula can be extended to: 
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2.2. Adaptive Fuzzy Clustering Theory and Model for Single-index 

Let  ={1, , }n  be a set of n patterns 1, 2, ,k n  . Each pattern is described by p  

symbolic interval variables. A symbolic interval variable X  is a correspondence, which is 
defined from   to R  so that for each k  , ( ) [ , ]X k a b  , where 

{[ , ] | , , }a b a b R a b     is the set of closed intervals defined in the real number set R . 

Each pattern k  is represented as a vector of intervals ( , , ..., )1 2x x x xk k k kp , where 
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[ , ]x a bkj kj kj  . In this paper, an interval datum matrix ( )kj n px   is made up of n  rows 

representing the n  patterns to be clustered, and p  columns representing p symbolic interval 

variables. Each entry of this matrix is an interval [ , ]kj kj kjx a b   ( 1, 2, ,k n  ;

1, 2, ,j p  ). ( 1, 2, ,k n  ; 1, 2, ,j p  ).  

Our goal is to divide n  patterns into c  categories. So let the prototype ig  of each 

cluster iP  ( 1, 2, ,i c  ) be represented as a vector of intervals ( , , ..., )1 2g g g gi ipi i , where 

[ , ]gij ij ij    ( 1, 2, ,j p  ). 

As the standard fuzzy algorithm, the fuzzy clustering method for symbolic interval data 

aims to determine a fuzzy partition of a set of patterns from c clusters 1{ , , }cP P and a 

corresponding set of prototypes 1{ , , }cg g  so that a criterion function 1W  measuring the 

fitness between clusters and their representatives (i.e., prototypes) is locally minimized. The 
criterion function is based on a non-adaptive distance between vectors of intervals and is 
defined as follows: 

 
1 2( ) ( , )

1 1

c n
W u x giik ki k

  
 

                                                   (7) 

 

Where ( , )k ix g  are the distances between patterns kx  and prototypes ig , iku  

satisfyconditions as follows: 
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For single-index, the distance is defined according to the structure of a cluster iP  and is 

described by a vector of coefficients 1( , , )i i ip    . We define the single-index adaptive 

wasserstein distance between the two vectors of intervals kx  and ig  as follows: 
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From Equation (9), the criterion function based on the above adaptive distance between 

vectors of intervals is defined as follows: 
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Then, the optimization model is constructed as follows Equation (10). 
 
In order to solve Equation (11), the Lagrange function is constructed as follows: 
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Using the Lagrange multiplier method, we get: 
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2.3. Algorithm  

The fuzzy clustering algorithm is summarized as follows: 

(1) Initialization. Choose fixed c  ( 2 c n  ) and 0  . iku ( 1, ,k n   and 1 ,i c 

) of pattern k  belonging to cluster iP  are chosen so that 0iku  and 
1

1
c

ik
i

u


 . Let 1t   

(2) The membership degrees iku  of patterns k  belonging to clusters iP  are 

fixed，Compute the prototypes ig  of classes iP  ( 1, ,i c  ) using Equation (13).  

(3) the membership degrees iku  of pattern k  belonging to cluster iP  and the 

prototypes ig  of classes iP  are fixed,compute the vector of  weights i  ( 1, ,i c  ) using 

Equation (14). 

(4) Update the fuzzy membership degrees iku  of patterns k  belonging to clusters iP  (

1, ,i c  ) using Equation (15). 

(5) Stopping criterion. If 1 1
1t tW W    , then Stop, Else let 1t t   and go to step 2. 

 
2.4. Adaptive Fuzzy Clustering Theory and Model for Double-index 

As described by the wasserstein metric, the advantage is reflected in its consideration 
of the central tendency and fluctuation of interval variables, so we consider giving different index 
to central and fluctuate part. And we get: 
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And m
ij  is the adaptive index of central part , v

ij is the adaptive index of fluctuation. 

Using the Lagrange multipliers method, we get: 
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3.  Simulation and Results 
We choose two synthetic interval data sets with different shapes and sizes to compare 

four fuzzy clustering algorithms considering different adaptive distances. For synthetic interval 
data sets, rectangles are built from three clusters of points drawn from three bi-variate normal 
distributions. We use the Corrected Rand (CR) index [6-8] for comparing two partitions. The CR 
index measures the similarity between a priori partition and a partition determined by a 
partitioning clustering algorithm. CR takes its values on the interval [0, 1], where 1 indicates 
perfect agreement between partitions, whereas values near 0 correspond to cluster agreement 
found by chance. 

 
3.1. Synthetic Symbolic Interval Data Sets 

In order to compare the results, we use the same data point presented in Souza and De 
Carvalho [1-3]. Data sets 1 and data sets 2 have 150 points respectively, Data sets 3 has 50 
points. 
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The data points of each cluster in this data set were drawn according to the following 
parameters: 
Class 1: 2 2

1 2 1 25, =250, 5, 30and       

Class 2: 2 2

1 2 1 245, =320, 5, 30and       

Class 3: 2 2

1 2 1 220, =150, 5, 5and       

 
 

 
Figure 1. Data Set 1 Figure 2. Data Set 2 

 
   

As we can see from Figure 1, data set 1 shows well-separated clusters. Data set 2 
shows overlapping clusters, depicted as in Figure 2. The data points of each cluster in this data 
set were drawn according to the following parameters: 

In order to build interval data sets from data sets 1 and 2, each point (z1, z2) of these 
data sets is considered as the “seed” of a rectangle. Each rectangle is therefore a vector of two 

intervals expressed by 1 1 1 1 2 2 2 2([ 2, 2],[ 2, 2])z z z z       . The parameters 1  and 2  are 

the width and the height of the rectangle. They are drawn randomly within a given range of 
values. In the framework of a Monte Carlo experiment, 100 replications of the previous process 

were carried out for parameters 1  and 2 , which are drawn randomly 100 times from each of 

the intervals [1, 8], [1, 16], [1, 24], [1, 32] and [1, 40].  
The above data sets are used to compare the following dynamic fuzzy clustering 

algorithms considering different adaptive distances: adaptive Hausdorff distance, one 
component adaptive city-block distance, the single-adaptive and double-adaptive fuzzy 
clustering methods proposed in this paper. For each 100 replications, the average CR index is 
calculated. Table 1 gives the values of the average CR index for the interval data sets 1 and 2 

as well as 1  and 2  drawn from the intervals [1, 8], [1, 16], [1, 24], [1, 32] and [1, 40]. 

For the data configurations with well separated classes, the average CR indices of 
adaptive wasserstein distance are better than those of other methods. Moreover, the CR indices 
of the double method are better than those of the dynamic clustering algorithms: adaptive 
Hausdorff, city-block distances and single wasserstein distance regardless of the ranges of the 
predefined intervals in Table 1.  

 
 

Table 1. Comparison of the Methods According to the Average CR Index 
Predefined 

intervals 
Interval data set 1 Interval data set 2 

sin wass. dou wass City-block Hausd
. 

sin wass. dou wass City-block Hausd
. 

[1, 8] 0.951 0.954 0.933 0.923 0.502 0.562 0.464 0.448 
[1, 16] 0.952 0.952 0.934 0.979 0.451 0.581 0.425 0.434 
[1, 24] 0.979 0.987 0.987 0.957 0.423 0.632 0.399 0.418 
[1, 32] 0.857 0.888 0.764 0.919 0.412 0.601 0.385 0.412 
[1, 40] 0.818 0.861 0.683 0.868 0.391 0.581 0.367 0.393 

 

 :class1;    :class2 ;   :class3                         :class1;   :class2 ;    : class3                      
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Notice that, for data configurations with overlapping classes, the double wasserstein 
distance clustering algorithm clearly outperforms the other methods. And, while single clustering 
method has almost the same performance as the dynamic clustering methods based on 
adaptive Hausdorff and city-block distances. 

So we get the following conclusion: no matter well seperated classes or overlapping 
classes, double-adaptive fuzzy clustering methods has the best performance.The reason is 
wasserstein metric dig the mean and variance distribution information in interval data while 
other metric focus on endpoints. Besides, double-adaptive fuzzy clustering methods give 
adaptive weights to indices, such as 

1

1
p

ij
j




  . It emphasizes inherent correlation structure 
between indices while others are not. 

In order to compare the computing efficiency of different methods, we show objective 
values and interations times from resluts of program running. It is easily seen from Table 2 that 
computing efficiency of the adaptive wasserstein algorithm is better than those of other 
methods. It means methods proposed in this paper have higher computational efficiency in 

large-scale data operation although it need to calculate more complex parameters such as 
m
ij  

and 
v
ij . 

 
Table 2. Comparison of Objective Functions and Average Iteration Times 

Predefined intervals          Interval data set 1 Interval data set 2 
  sin  
 wass. 

  dou   
  wass.    

 City- 
 block 

Hausd.   Sin     
wass. 

 dou 
wass 

 City 
-block 

Hausd. 

[1, 8] 

Objective 
values 

7869.0 7235.6 19632.0 9816.0 10091.5 7523.7 27462.1 13731.2 

iteration 
times 

10 10 14 10 23 23 26 26 

[1,16] Objective 
values 

7869.0 7235.0 19673.0 9816.0 10091.5 7523.7 27462.2 13731.2 

iteration 
times 

10 10 14 10 23 23 25 23 

[1,24] Objective 
values 

6065.0 5823.0 19638.9 9815.0 7923.8 6923.6 27462.4 8891.5 

iteration 
times 

10 10 14 10 23 23 27 23 

[1,32] Objective 
values 

6065.0 5823.0 19632.0 6608.4 7923.8 6923.6 27462.4 8891.5 

iteration 
times 

10 10 13 10 22 23 26 27 

[1,40] Objective 
values 

6065.0 5823.0 19632.0 6608.4
8 

7923.81 6923.6 27462.2 8891.5 

iteration 
times 

10 10 13 19 22 23 22 26 

 
 
4. Conclusion 

The choice of a metric is an important task when a fuzzy clustering of interval data is 
performed.Based on the defined wasserstein metric, the single-index and double-index adaptive 
fuzzy clustering algorithms for symbolic interval data are introduced. Compared with other 
methods, wasserstein metric considers the density of points within the intervals and the mean 
and variance of intervals. Besides, adaptive parameters in the fuzzy clustering model was 
introduced which considers correlation of indices. Finally, simulation experiments are carried out 
with two artificial interval data sets and show the usefulness and validity of proposed clustering 
methods. Compared with Hausdorff and city-block distances fuzzy clustering models, the 
proposed methods performance better not only in clustering results but also in computing 
efficiency. 
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