
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol.12, No.3, March 2014, pp. 1799 ~ 1803
DOI: http://dx.doi.org/10.11591/telkomnika.v12i3.4468 1799

Received August 25, 2013; Revised September 30, 2013; Accepted October 9, 2013

MVx-modeling: A Modeling Environment for Embedded
Software Design of Heterogeneous MPSoC

Zhai Wen-zheng*1,2, Hu Yue-li1

1Shanghai University, School of Mechatronic Engineering and Automation, Shanghai, 200072, China
2Taizhou University, School of Mathematics & Information Engineering, Taizhou, 317000, China

*Corresponding author, e-mail: zhwenzheng@shu.edu.cn

Abstract
Owing to the complexity and flexibility in heterogeneous multiprocessor System-on-Chip (MPSoC)

architecture, parallel programming has become a tough and urgent problem to solve. Model-based
development methodology improves the software production efficiency and the reliability. Some model
development tools such as Simulink and Rhapsody are widely applied in the development of embedded
applications. But they do not satisfy the characteristics of embedded heterogeneous multi-core software.
Thus developing a general modeling environment for model-based software design is necessary and
meaningful. This paper designed and implemented a graphical modeling platform MVx-modeling by using
the object-oriented programming technology and Visual C#.NET development language. Practical
application shows MVx-modeling platform easy-to-use and efficient. It speeds embedded application
development and lowers software costs for heterogeneous MPSoC.

Keywords: modeling environment, model-based development, embedded software, heterogeneous
MPSoC

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction
Along with the advancement of the semiconductor manufacturing and the in-depth

research of the processor architecture, the heterogeneous MPSoC has been widely used in the
embedded system, typically as Sony-Toshiba-IBM Cell Broadband Engine (Cell BE) [1] for
consumer electronic products and TI OMAP [2] for cellular phones.

Owing to the complexity and flexibility in heterogeneous multi-core architecture, multi-
core programming has become a tough and urgent problem to solve. The traditional parallel
development method is based on the use of language extensions such as OpenMP, MPI [3]
parallel libraries, parallel programming language and parallel compiler, which have been proven
inappropriate in embedded software development [4].

MDA methodology makes developers to focus modeling instead of the traditional coding
concerning many platform details [5], improves the software production efficiency and the
reliability of the software in embedded software design. Some commercial model development
tools such as MATLAB/Simulink[6], LabVIEW [7] and Rhapsody are applied within the detailed
design and coding phase of embedded applications. But they do not satisfy the characteristics
of embedded heterogeneous multi-core software, the reason is neither they generate parallel
programs based on customized embedded Real-Time Operating System (RTOS) nor check the
schedulability of the generated software[8][9]. And they do not consider the resource constraints
at the stage of code generation and provide verification capability of the generated parallel
software [10].

Thus developing a general modeling environment for model-based software design of
embedded heterogeneous MPSoC is necessary and meaningful. This paper designed and
implemented a graphical modeling tool MVx-modeling by using the object-oriented programming
technology and Visual C#.NET development language.

The remainder of this article is organized as follows: Section 2 presents the graphic
modeling system structure. Section 3 outlines some key development technologies. Section 4
presents MVx-modeling environment prototype. Section 5 gives the conclusions with some
future work.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 3, March 2014: 1799 – 1803

1800

2. Module Partition
MVx-Modeling environment is a graphical productivity tool for engineers developing

embedded applications based on the Ⅱ-μc/os RTOS. It provides a visual abstraction and

design assistance in the model-based software development life cycle.

Figure 1. Graphic Modeling System Structure

Figure 1 shows that the modeling system structure is composed of graphic element

management subsystem, models management subsystem, graphic editing subsystem and
graphic documents subsystem. Graphic element is the fundamental unit of graphical modeling,
is a graphical representation of the algorithm.

3. Key Technologies

MVx-Modeling represents the application and the architecture in graphical form with
visual icons allowing user to model and build software system at a higher, intuitive level. Some
key development technologies are put forward.

3.1. Object-oriented Graphics Class Structure Design

Figure 2 depicts the proposed object-oriented graphics class structure. In this section,
base class BaseObj defines graphical elements' public attributes and virtual function operations
such as copy, paste, delete, move etc. In each of the derived classes TaskObj, FunObj,
LineObj, SemaphObj, the specific attributes and operating methods are defined in detailed.

Base class DrawTool defines mouse events virtual functions of click, move operation.
Depending on the different graphic elements in the inheritance function, the corresponding
graphic operation functions in a class are called to complete create, move and delete operation.

Figure 2. Object-oriented graphics class structure

TELKOMNIKA ISSN: 2302-4046

MVx-modeling: A Modeling Environment for Embedded Software Design of… (Zhai Wen-zheng)

1801

3.2. Graphic Element Management
Graphic element is a graphical representation of the algorithm. A definition of graphic

element aims at to establish the mapping relationship between graphic element and algorithm,
the corresponding relationship between pins of graphic element with input/output in algorithm, to
specify symbol file and to assign properties of graphic element etc.

In the application modeling, when the Task graphic element is newly created, the
definition dialog box is activated to display as Figure 3. At the same time, 2 files named Task*.h
and Task*.c are generated automatically in the project folder. Some properties such as name,
description, task executors path, initial priority, type, size, cost are valued in detail.

Figure 3. Task Graphic Element Definition

<?xml version="1.0" encoding="utf-8"?>
<MPSoC>

<Cores>
 <processor name="arm926ej-s0">

<index>0</index>
<localMem name="lmad0">

<addr>0x0</addr>
<size>0x10000</size>

</localMem>
<shareMem name="shmad0">

<addr>0x10000</addr>
<size>0x40000</size>

</sharedMem>
<OS>

<support>TRUE</support>
</OS>

</ processor >
……

</Cores>
</MPSoC>

(a) Architecture part

<MPSoC>

<Objs>
<task name="SensorReader">
<coreMap>0</ coreMap>
<priority>9</ priority >

<fileName>SensorReader_arm926ejs0.c</
fileName >

</task>
</Objs>
<Objs>

<semaph>
<name>Semph_sensor</name>
<src> SensorReader </src>
<dst> LcdOutput</dst>
</semaph>

</Objs>
……

</MPSoC>

(b) Application part

Figure 4. An Example of the Model Files Design

As soon as double-click or right click the task graphic element, the dialog box is
displayed to facilitate further modification. Other graphic elements are similar to the operation of
the Task graphic element.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 3, March 2014: 1799 – 1803

1802

When the Semaphore graphic element is newly created, the system call functions of
relevant event are produced and inserted into the main application file.

3.3. Design of Model Files

As is seen in Figure 4, the “architecture” section of the model files contains the
hardware architecture information that is necessary to describe heterogeneous multi-core
platform. The “application” section specifies kernel objects tasks and events used in the
communication and synchronization requirements among tasks or exceptions.

The name of root node is MPSoC, the first level child node Cores, Objs are used to
record all graphic element information in the application model and architecture model.

When the user operates graphic element in modeling area, the correspond nodes are
linked certain list in the computer memory. When the file save command is executed, the list are
saved as xml-style files at last

3.4. Picking Graphics

Picking up graph is the prime work of graphic element operation and properties editing
and the accuracy and efficiency of picking up will directly affect the function of the graphics
modeling environment.

When the user clicks on a graphic module, the corresponding processing procedure is
activated to track mouse events. As is seen in Figure 5, firstly the picking graphic algorithm
traverse each node in the linked list orderly to identify the clicked graphic element just before.
Then highlight the graphic module by showing color outline border to declare "selected" state.

 for (int i = 0; i < mlObj.Count; i++)
 {

if ((mlObj[i].isHit(e.Location) == true))
 { mnObjSelectedIndex = i;
 break;
 }
}

Figure 5. Picking Graphics Algorithm

4. Implementation

As is seen in Figure 6, MVx-Modeling environment is divided into five distinct areas:

Figure 6. MVx-Modeling Environment

TELKOMNIKA ISSN: 2302-4046

MVx-modeling: A Modeling Environment for Embedded Software Design of… (Zhai Wen-zheng)

1803

a) Main Menu: handles project files and text documents; edits layer diagrams;
generates the parallel source code.

b) Graphic element libraries: drag-and-drop placement and editing of kernel objects and
services such as task, exception, function, semaphore, mailbox, queue.

c) Workspace Window: offers a hierarchical view of the layers that compose the OS-
based application. Each layer describes one portion of the application running in a certain
processor of heterogeneous MPSoC.

d) Model editor area: presents kernel objects and their relationships. The nodes of the
application model graph represent the kernel objects, whereas the connection lines indicate
calls to the kernel services that handle these objects.

e) Output window: displays status message, such as the status of ongoing operations or
the generation of the source files.

The example of application modeling In Figure 6 specifies five tasks, two exceptions,
two semaphores and one function instance, the producer task (task3) which signals a
semaphore (semaphore0), and a consumer task (task5) which consumes the signals. After
properties description configuration, the application model file can be saved to support further
model-based development process.

5. Conclusion
Embedded software development is a very challenging task in heterogeneous MPSoC

architecture. Model-based development method improves the software development efficiency
and maintainability, shorten the development cycle. In this paper, we research and develop a
new modeling environment MVx-Modeling, easy-to-use graphical design tool, that speeds
embedded application development and lowers software costs for heterogeneous MPSoC.

The next step is to generate optimized parallel software codes for each processor from
the MVx-Modeling environment. The ultimate goal of our effort is to create a model-based
embedded heterogeneous MPSoC software development environment consisting of modeling,
simulation, verification, code generation and testing process.

References
[1] Blagojevic Filip, Feng Xizhou, Cameron Kirk W, et al. Modeling multigrain parallelism on

heterogeneous multi-core processors: A case study of the cell BE. High Performance Embedded
Architectures and Compilers - Third International Conference, HiPEAC. Goteborg, Sweden. 2008: 38-
52.

[2] Texas Instruments. OMAP5910 Dual-Core Processor Technical Reference Manual. TI Technical
Document SPRU602B. 2003.

[3] Zhang JingJun, Liu WenJuan, Liu Guang Yuan. Parallel genetic algorithm based on the MPI
environment. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2012; 10(7): 1708-1715.

[4] Wayne Wolf, Ahmed Amine Jerraya, Grant Martin. Multiprocessor System-on-Chip (MPSoC)
Technology. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems: 2008;
27(10): 1701-1713.

[5] Soonhoi Ha. Model-based Programming Environment of Embedded Software for MPSoC.
Proceedings of the 2007 Asia and South Pacific Design Automation Conference. 2007: 330-334.

[6] Tatsuya Kamiyama, Masayoshi Tamura, Takahiro Soeda, etc. An Embedded Control Software
Development Environment with Simulink Models and UML Models. IAENG International Journal of
Computer Science. 2012; 261-268.

[7] Gary W Johnson. LabVIEW Graphical Programming: Practical Applications in Instrumentation and
Control. McGraw-Hill School Education Group. 1997.

[8] Wenzheng Zhai, Yueli Hu. A model-based development method of embedded software for energy
HMPSoC. Energy Education Science and Technology Part A: Energy Science and Research. 2013;
31(2): 1129-1134.

[9] Wenzheng Zhai, Yueli Hu, et al. User guided programming methodology for embedded
heterogeneous multi-core processor. China. 201210151037.5. 2012; 10.

[10] Zhang Zhiyong, Liu Jie, Zhang Xinhui. UML modeling for dynamic logistics system based on DEVS.
TELKOMNIKA Indonesian Journal of Electrical Engineering. 2013; 4(11): 2168-2173.

