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Abstract 

In this paper, we first investigate and contrast the features of energy detection and cyclostationary 
feature detection for spectrum sensing. Combining the advantages of both, we propose an adaptive two-
stage sensing scheme which first performs spectrum sensing using an energy detector in cognitive and 
dynamic spectrum access networks. Then this scheme decides whether or not to implement 
cyclostationary feature detection based on the sensing results of the first stage. On the premise of meeting 
a given constraint on the probability of false alarm, our proposed scheme aim to optimize the probability of 
detection. In order to obtain the optimal detection thresholds, the detection model is formulated as a 
nonlinear optimization problem. Furthermore, the performance of our scheme in sensing speed is also 
analyzed. The simulation results show that the proposed scheme improves the performance of spectrum 
sensing compared with the ones where only energy detection or cyclostationary feature detection is 
performed. 
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1. Introduction 

Future wireless communication networks envisage the challenge that the available 
spectrum is becoming increasingly scarce. However, the conventional approach of static 
spectrum allocation leads to significant radio spectrum underutilization; e.g., at least 50% of 
broadcast television channels in the Washington area are unused, constituting known ‘white 
spaces’ in the spectrum [1]. 

Cognitive radio (CR) [2, 3] or dynamic spectrum access (DSA) technology is a 
promising approach for the more effective use of existing spectrum which can intelligently 
identify unused licensed bands and allow adaptive utilization of them as long as not causing 
unacceptable interference from unlicensed or secondary users (SUs) to licensed or primary 
users (PUs). In order to determine whether or not the licensed bands are unused, the SUs have 
to perform spectrum sensing. The need for fast and effective (reliable) spectrum sensing over a 
wide bandwidth is fundamentally important to DSA. Meanwhile, spectrum sensing is also a 
challenging task, because the received PU signal at SU receiver is possible to be very weak 
owing to path loss and fading [4], the perfect detection of PU’s transmission is hard to 
implement in practice. 

Various spectrum sensing schemes have been proposed. Many of them exploit two 
typical features, namely energy [5] and cyclostationary features [6]. Energy detection is one of 
the most popular techniques for spectrum sensing, where a SU makes a decision with respect 
to the presence of PUs according to the amount of its received energy [7]. This method is easy 
to implement, and does not need that the SU knows the information of the PU signal. However, 
it suffers from a relatively poor performance owing to the uncertainty of noise level in the low 
signal-to-noise ratio (SNR) regime. A significantly better performance can be achieved through 
cyclostationary feature detection exploiting the periodic structure of the PU signal, by carrying 
out cyclic spectral analysis [8]. Through this method, noise can be significantly suppressed, thus 
achieving more robustness than energy detection. In addition, this method detects only signals 
with the desired feature and therefore is able to distinguish certain types from others. However, 
the exact cyclostationary feature of the PU signal may not be known to the SU and needs a long 
observation to be obtained. Also, the downside of this method in general is its increased 
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computational complexity and memory requirements, which makes this method difficult for 
practical use, especially in the environments of high real-time requirements. 

In a practical CR system, one common requirement of sensing approaches is the fast 
and effective (reliable) detection of idle primary channels by SUs as characterized by the mean 
sensing time. The mean sensing time is the average time to successfully sense an available 
channel, which depends on the search algorithm. The importance of detector design is further 
enhanced by the impact of its operating characteristic which is represented by the probability of 
correct detection, Pd, and the probability of false alarm, Pf, respectively. 

As mentioned above, cyclostationary feature detection has superiority in sensing 
effectiveness over energy detection, especially for low SNRs. On the other hand, energy 
detection is a much quicker and easier spectrum sensing method, while it has not too much 
degradation of sensing accuracy compared with cyclostationary feature detection for high SNRs 
[9], [10]. Thus, with the grain of nature, a tradeoff between sensing speed and sensing accuracy 
combining the advantages of these two detection methods will make the most sense. 

In this paper, we first give a brief introduction to the mechanisms of energy detection 
and cyclostationary feature detection, and then propose an adaptive two-stage sensing 
approach based on energy detection and cyclostationary feature detection to achieve the 
tradeoff mentioned above. By now, a lot of papers have investigated two-stage sensing for CR 
systems. However, there has been few works on the combination of energy detection and 
cyclostationary detection, to the authors’ knowledge. In the first stage of the proposed scheme 
energy detection is performed. Then, the proposed scheme decides whether or not to perform 
cyclostationary detection according to the sensing results of the first stage, i.e., if the energy is 
greater than a certain threshold, the given channel is sensed to be active, else, cyclostationary 
detection is performed. In the second stage, through comparing the decision metric with another 
certain threshold, the given channel is declare to be active or idle. Aiming at optimizing the 
probability of detection under the constraint on the probability of false alarm, we formulate the 
detection model as a nonlinear optimization problem and give the method to deduce the above 
two optimal thresholds. Moreover, we also analyze the performance of the proposed scheme in 
sensing speed by deducing the mean sensing time.  

The remainder of this paper is organized as follows. In Section 2, we give a brief 
introduction to the proposed adaptive two-stage sensing scheme. In Section 3, the 
characteristics of energy detection and cyclostationary feature detection techniques are given, 
and the proposed scheme is described in more detail. The optimal thresholds for the proposed 
two-stage sensing scheme are also derived in this section. Moreover, we analyze the 
performance of the proposed scheme in sensing speed. Simulation results are presented in 
Section 4, and conclusions are drawn in Section 5. 
 
 
2. The Proposed Algorithm 
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Figure 1. Adaptive Two-stage Spectrum Sensing 
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In this section, we will briefly introduce the adaptive two-stage spectrum sensing 
scheme. The flow chart of the proposed scheme is shown in Figure 1. For simplicity, we ignore 
the period of data communication and assume that the spectrum sensing is carried out without 
interruption. We further assume that there is only a single channel to be sensed.  

In the first sensing stage, we use energy detection. If the decision metric ED is greater 

than a certain threshold 1 , we declare the channel is active and occupied by a PU. Else, the 

second stage is necessary and we reanalyze the received signal by cyclostationary feature 
detection. Similarly, we introduce another constituent detection metric CD  and compare it with 

another threshold 2 . If CD is greater than 2 , we declare the channel is occupied, else it is 

declared to be idle. 
 
 

3. Research Method 
In this section, we first give the characteristics of energy detection and cyclostationary 

feature detection techniques and discuss them in the context of our adaptive two-stage 
spectrum sensing. 
 
3.1. First Stage: Energy Detection 

In the first stage, energy detection is performed. If SUs’ prior knowledge is limited, the 
optimal detector is an energy detector, where the received signal over each frequency band is 
squared and integrated over the observation interval. 

According to [11], spectrum sensing in CR networks can be formulated as a binary 
hypothesis-testing problem, where hypotheses 0H  and 1H correspond to the cases of absence 

and presence of PUs, respectively. Assuming sensing at times {1,2,...., }n N , the received 

signal samples for the two hypotheses may be modeled as: 
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Where ( )y n , h , ( )s n , and ( )z n denote the received signal samples, the channel gain, the 

PU signals, and zero-mean complex additive white Gaussian noise (AWGN) with variance 2
z , 

respectively. The channel gains are assumed to be constant for the duration of spectrum 
sensing. The PU signal is assumed to be an independent, identically distributed (i.i.d.) random 
process with zero mean and variance 2

s . The noise samples, the channel gains, and the PU 

signals are assumed to be mutually independent. We further assume that both the PU signals 
and the noise samples are temporally i.i.d.. 

The energy detector uses the following decision rule: 
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According to [12], we model the test statistic for large N as: 
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The probability of false alarm and the probability of detection for the given channel 

under the energy detection are given by: 
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Where ( )Q  is the standard Gaussian complementary cumulative distribution function, 

i.e.: 
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3.2. Second Stage: Cyclostationary Feature Detection 

In the second sensing stage, cyclostationary detection is performed. Cyclostationary 
processes are random processes for which the statistical properties such as the mean and 
autocorrelation change periodically as a function of time. This paper uses the second-order time 
domain cyclostationary detector presented in [13]. 

A random process ( )y m , {1,2,...., }m M is wide-sense second-order cyclostationary, if 
there exists a K>0 such that: 

 
( ) ( )y ym m K   ,                                                                                         (6) 

 
( , ) ( , ),y yR m R m K     ,                                                                                   (7) 

 
Where K is the cyclic period, ( ) [ ( )]y m E y m  is the mean value of the random process 

( )y m , and *( , ) [ ( ) ( )]yR m E y m y m   is the autocorrelation function. 

( , )yR m  has a Fourier-series representation due to its periodicity as follows [13]: 
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Where the Fourier coefficients can be expressed as: 
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With the cycle-frequency α. 

In practice, we consider the following estimator of ( )yR   for a given K. 
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Where ( )y
  denotes the estimation error which equals to zero if M approaches infinity. 

Due to this error, the estimator ˆ ( )yR  hardly ever equals to zero in practice, which leads a 

difficult problem about determining whether or not the ( )yR   corresponding to a given value of 

ˆ ( )yR   is zero. To solve this problem statistically, the decision-making approach in [13] is used. 

We consider a vector of ˆ ( )yR   rather than a single value to check for the presence of 

cycles in a set of lags   at the same time. Let 1,..., K   be a fixed set of lags, α be a candidate 
cycle-frequency, and: 
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Be a 1 2K row vector consisting of second-order cyclic-cumulant estimators from (9). If 

the asymptotic value of ˆ
yR is given as: 

 

       1 1Re ( ) ,...,Re ( ) , Im ( ) ,..., Im ( )y y y K y y KR R R R         R ,                              (11) 

 

Then using (9), we can write ˆ
y y y R R ε , where: 
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             ε ,                                (12) 

 
Is the estimation error vector.  
According to [3], the test statistic related to the detector in the second sensing stage 

can be expressed as follows: 
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Where Σ̂ denotes the covariance matrix of ˆ
yR . In [13], the authors show that the test 

statistic follows a central chi-squared distribution under the hypothesis 0H , and it follows a 

Gaussian distribution under the hypothesis 1H . Therefore, assuming that M is large enough, the 

distribution of CD can be expressed as:  
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If 2CD  we can determine α is a cycle-frequency and the PU is present. Else, the PU is 

absent and the target channel can be used for the SU. 
The probability of false alarm and detection can be given as: 
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Where ( )  is the gamma function and 1( , ) da t

x
a x t e t

     is the incomplete gamma 

function. 
 

3.3. Performance Indexes of Our Proposed Scheme 
 In this section, we introduce the performance indexes of the proposed scheme: 

probability of detection and mean sensing time. 
Based on (4), (5), (15) and (16), the overall probability of false alarm and detection for 

the adaptive two-stage sensing scheme can be formulated as: 
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In order to measure the agility of our adaptive two-stage sensing scheme, we need to 
compute its mean sensing time which can be expressed as follows: 

 

E CT T T  ,                                                                                                             (19) 

 
Where 2ET N W is the mean sensing time for the first sensing stage (W is the channel 

bandwidth) and CT is the second sensing stage mean sensing time, which can be derived as 

follows: 
 

2C repT P M W ,                                                                                                      (20) 

 
Where repP  is the probability that cyclostationary detection is performed and is given as: 
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Hence, the total mean sensing time and the sensing speed can be expressed as: 
 

  2repT N P M W  ,                                                                                           (22) 
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3.4. Optimal Thresholds Derivation 

In this section, our initial goal is to design the thresholds 1 and 2  for optimizing sensing 
accuracy and sensing speed under a given constraint on the probability of false alarm. Since 
there are two optimization goals, the corresponding nonlinear optimization problem can be 
formulated as: 

 

1 2
1 1 2 2 0
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     ,                                                          (24) 

 
Where 1w and 2w are the weights, 0v is the minimum sensing speed requirement. 

However, this problem is very complex to be solved. Additionally, the value of these two weights 
significantly impacts the performance of the detector and cannot be determined easily.   

In general, sensing speed is mainly limited by cyclostationary detection which needs 
complex calculations and a long observation. To the contrary, the sensing accuracy is mainly 
limited by the first sensing stage. Thus, the probability of implementing the second sensing 
stage, 

repP  determines the tradeoff between sensing speed and sensing accuracy. According to 

(21)-(23), since
0( )P H and

1( )P H  cannot be known by the SU, we first focus on maximize the 

probability of detection, and then check whether the value of detection thresholds meets the 
requirement of sensing speed. If not, we fix the thresholds manually. Thus, problem (24) can be 
simplified as [14] 

 

1 2
1 2
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max ( , ) . .d fP s t P
 

   .                                                                                    (25) 

 
The inequality constraint in the problem (25) makes this problem hard to be solved. 

Fortunately, it can be reduced to an equality constraint because the optimal value of the 
probability of detection is attained by fP  . The reason why such a simplification can be 

applied is given as follows. 
According to (5), (16) and (18), we can see that Pd is a differentiable and decreasing 

function of the thresholds 1  and 2 . Hence, it is obvious that the derivative of Pd with respect to 

1 or 2  is negative. Hence, we can obtain the maximum value of Pd if and only if 1 and 2 reach 
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their minimum possible value. Also, the derivative of Pf with respect to 1  and 2  is also 

negative. We assume that * *
1 2( , )   represents the optimal solution of (25) with the constraint

fP  . We keep the threshold *
1  to be constant and decrease *

2 until we reach fP  . In this 

case, a higher probability of detection is attained for *
2 2  . Thus it is quite obvious that * *

1 2( , ) 
cannot be the optimal solution of problem (25). Therefore, the optimal Pd can be obtained when

fP  .  

Hence, the problem (25) can be rewritten as: 
 

1 2
1 2
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   .                                                                                     (26) 

 
For a given constraint  , we have the following relation between 1 and 2 . 
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Therefore, the problem (26) can be simplified as: 
 

2
2 2max ( ( ), )dP f


  .                                                                                                         (28) 

 
This problem is unimodal in 2 and can be solved by unconstrained optimization 

algorithms, for example, the steepest descent algorithm. Due to the complex computation, we 
omit the solving process of 1 and 2 . 

After we obtain the value of 1 and 2 , we can calculate the probabilities of false alarm 

and detection C
fP  and C

dP  in the second sensing stage. Thus, using (21), we can obtain the 

probability that cyclostationary detection is performed, repP . Then, the total mean sensing time 

T can be obtain through (22). However, this total mean sensing time may be longer than the 
maximum sensing time which we can tolerate. In this case, we should return to problem (24), 
and reconsider optimizing the sensing speed. As mentioned above, it is very complex to be 
solved. However, on the other hand, the physical meanings of the overall probability of 
detection dP and the sensing speed v are different in problem (24), and the values of the weights

1w and 2w are subjective to a large extent. Thus, to solve problem (24) with inappropriate weights

1w and 2w is not very meaningful and needs huge and expensive effort. Therefore, in general, we 
apply problem (26). If the thresholds optimization are strictly subject to the overall probability of 
detection and the sensing speed constraints with appropriate weights 1w and 2w , we turn to 
problem (24). 
 
 
4. Results and Analysis.  

In this section, we present simulation results to illustrate the performance of our 
scheme. These experimental results are used to compare the performance of the conventional 
one-stage (energy detection and cyclostationary detection) and proposed two-stage sensing 
schemes. In the simulation, we employ a channel bandwidth of 8MHz and a DVB OFDM signal 
as PU signal which consists of 18 OFDM symbols. Denoting the OFDM symbol length by Ts, we 
assume the considered PU signal exhibits cyclostationarity with 2 sm T  , m N and 0m  . 

Further, we set 1m  . The simulation parameters are set in the following table. 
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Table 1. The Simulation Parameters 
Parameter Variable Unit 
bandwidth 8 MHz 

Number of OFDM symbols 18 - 
m 1 - 

OFDM symbol length 100 us 

 

 
 

Figure 2. Probability of Detection of the Propose Scheme versus 2  

 
 
Figure 2 presents the probability of detection of the adaptive two-stage sensing scheme 

with respect to
2 for different β at 15dBSNR   . From the figure, it can be seen that when 

fP  , the maximum probability of detection is attained. 

Then, we assume that β=0.1, i.e. the same probability of false alarm constraint is 
imposed on all three sensing schemes. 

Figure 3 presents the detection performance versus SNR for the adaptive two-stage 
sensing scheme, energy detection and cyclostationary detection. As we can see, for an SNR 
that is less than −10dB, the two-stage sensing scheme performs better than both energy 
detection and cyclostationary detection. 
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schemes in Figure 4. As the figure shows, when
0( ) 0.3P H , in the SNR range where the 

proposed scheme performs better than energy detection, (SNR less than −10dB), the proposed 
scheme performs better than cyclostationary detection in terms of mean sensing time and 
probability of detection. However, when

0( ) 0.7P H , the proposed scheme does not always 

perform better than cyclostationary detection in terms of mean sensing time. 
 
 
5. Conclusion 

As the demand of spectrum resource increases in past few years and licensed bands 
are used inefficiently, improvement in the existing spectrum access policy is expected. DSA can 
resolve the spectrum shortage by allowing SUs to dynamically utilize spectrum holes across the 
licensed spectrum on non-interfering basis. In this paper, an adaptive two-stage sensing 
approach was presented. Under the considered system model, we analyzed the features of 
energy detection and cyclostationary feature detection and deduced the performance indexes of 
the proposed scheme. Most importantly, the optimal thresholds for the adaptive two-stage 
sensing scheme were designed in order to optimize the probability of detection and sensing 
speed under a given constraint on the probability of false alarm. Simulation results illustrated 
that at low SNR, where the energy detector is not reliable, the two-stage sensing scheme 
provides improved detection. Additionally, the mean sensing time is much lower than the 
cyclostaionarity detection scheme for most of the SNR range. However, the simplified version of 
the formulated original optimization problem (24) only focuses on optimizing sensing accuracy 
but does not optimizing sensing speed due to the high complexity of the original problem, which 
may result in that the total mean sensing time is longer than the maximum sensing time we can 
tolerate. In the further work, we will try to find an efficient solution to jointly optimize the 
probability of detection and sensing speed. 
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