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Abstract 
In recent years, the growing power quality problems in smart grid cause widespread concern at 

home and abroad. Because the traditional power quality algorithms which are based on Nyquist sampling 
theory have the drawbacks of complicated, heavy computations and poor real-time performance when 
sampling and analyzing continuous massive signals in smart grid. This paper discussed an improved 
reconstruction algorithm based on compressed sensing due to the sparsity of power quality signals in 
frequency domain for power quality analysis. By using the ZigBee wireless gateway for wireless sensor 
networks and energy metering chip, we develop a single meter node to do relative experiments. In the 
condition of the real test-bed and several compared experiments, power quality information in the highly 
compression ratio has good performance according to CSR (Compression Sampling Ratio), SNR (Signal 
to Noise Ratio), MSE (Mean Squared Error) and ERP (Energy Recovery Percentage) , and will be widely 
used in power quality analysis. 
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1. Introduction 

In recent years, the growing power quality problems in single phase power grid cause 
widespread concern at home and abroad. The power quality problems mainly lie in several 
aspects: Power load in single-phase power grid is becoming more and more complicated and 
diversified. Modern electrical equipments, which are adopted for the sake of improving 
production efficiency, saving energy and decreasing pollution of the environment, are becoming 
the main resource of power quality problems. The single-phase power load which has the 
feature of nonlinear, rich harmonic, impactive and unbalanced will influence power grid and 
causes new problems of power quality. Power customers have increasingly demand of reliable 
power supply. Most precision electronics equipments and power electronics equipments which 
are controlled by computers and microprocessors are sensitive to the quality of power supply. 
Electronics equipments are more sensitive to the influence of power system than 
electromechanical equipments and demand for high requirements for power quality. Once the 
power grid appears problems, harms rang from economic losses to endangered power grid, 
equipments and personal safety, even for the community unstable which may affect social 
stability. Next-generation smart grid is composed of a great many discrete power generating, 
transmitting and distributing equipments. Many problems such as voltage bias fluctuation of 
regional power grids, harmonic pollution and increasing of reactive power factor are caused by 
the parallel operation of more and more small power generating equipments such as solar 
generators, wind turbines and thermal power generators. In order to ensure the safe and 
economic operation of smart grid and keep the stability and self-healing of power quality in 
microgrid, the research of power harmonic suppression and reactive compensation is becoming 
more and more urgent. 

 
 

2. Related Works 
2.1. Introduction of Compressed Sensing  

In 2006, David L. Donoho et al proposed CS (Compressed Sensing) theory [8, 9], that 
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sparse signal with suitable reconstruction algorithm can be recovered from a very small set of 
measurements that far fewer than conventional measurement limited by Nyquist theorem. 
According to CS, it can sample and compress PQ information synchronously without any prior 
knowledge. Generally, CS theory basically consists of three steps: finding the sparsest 
decomposition of a signal, designing applicable compression representing matrix, which well 
approximates the original signal x  in least coefficient, designing corresponding reconstruction 
algorithm, which reconstructs original signal length in N from observed M coefficients. 

According to the theory, if original signal is sparse or in transform domain the original 
signal is sparse, using appropriate optimization algorithms can reconstruct original signals 
through a few number of sampled signals and the number of sampled signals used in 
reconstruction can be far below the number of sampled signals in the algorithms based on 
Nyquist theorem. CS theory is not the overall denial of Nyquist theorem, but using the sparsity 
of signals to reconstruct original signals through fewer sampled signals than the algorithms 
based on Nyquist standards. 

CS (Compressed Sensing) theory take advantages of the sparsity of signals and use 
suitable reconstruction algorithms to reconstruct original signals through a very small set of 
observed values that far fewer than the signals limited by Nyquist theorem. Compared with the 
previous algorithms based on Nyquist sampling theorem, CS theory has the following 
advantages: 

(1) CS theory’s sampling speed is far lower than Nyquist’s. And CS theory does global 
observations rather than local sampling; what is more, each observed value contains part of 
effective information of the signal. In the meanwhile, CS theory uses different observe 
algorithms every time to ensure the observed values has fewer information redundancy. 
Compared with the transform coding in sparse basis, the coefficients’ location is no longer so 
important. 

(2) In the aspect of decoder, the decoder has high robustness to the missing 
information for the reason that the importance of each projection coefficient is the same and the 
lose of several coefficients will has fewer influence to the reconstruction of original signals.  

(3) Combining compression with sampling, algorithms based on CS theory use fewer 
memory spaces and computing resources than traditional sampling algorithms. Applying the 
saved resources in the later processing will reduce the cost of sampling and transmission. 

(4) CS theory can relieve the computation burden of hardware and leave the 
computations to computers in later process and achieve the same reconstructive effects of 
original signal with the traditional algorithms by using the powerful parallel processing abilities of 
computers while keeping costs low. 

The amounts of sampled signals are greatly reduced by the applications based on CS 
theory, solving the problems in signal processing, transmission and storage. And those 
applications develope rapidly in recent years: 

In the aspect of sparse representation of signal, literature ten and eleven [10, 11] shows 
that the Fourier coefficients, wavelet coefficients of smooth signal, total variation norm of 
bounded variation functions , the Gabor coefficients of oscillator signal and Curvelet coefficients 
of image signal which has discontinuous edges have enough sparsity. However, how to find or 
construct orthogonal basis for a class of signals in order to get the best sparse representation of 
the signals is the problem needed to be studied further. 

In the aspect of measurement matrix, literature twelve [12] points out that under the 
premise of RIP (Restricted Isometry Property, RIP) principle, we should reduce the dimensions 
of measurement matrix while ensure the loss information of original signal is minimal. 
Nowadays the measurement matrixes applied in CS theory are: Gaussian random matrix [10], 
binary random matrix (Bounerlli matrix), Fourier random matrix [11], Hadamard matrix etc.  

In the aspect of signal recovery algorithms which means reconstruct original signal 
length in N from observed M coefficients, literature thirteen and fourteen [13, 14], point out that 
typical recovery algorithms are BP (Basis Pursuit, BP) algorithm, interior point algorithm, 
conjugate gradient projection algorithm and iterative threshold algorithm etc. Other 
reconstruction algorithms are OMP (orthogonal matching pursuit OMP) algorithm, TV 
reconstruction algorithm and other improved algorithms. 

ROMP (Regularized Orthogonal Matching Pursuit, ROMP) algorithm is another marked 
improvement algorithm in traditional matching pursuit algorithm. ROMP algorithm is developed 
from traditional matching pursuit algorithm MP algorithm [16] and OMP algorithm [17]. ROMP 
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algorithm is on the basis of OMP algorithm and use regularization method to select elements 
which can select several eligible elements to support set and reducing the time of power signal 
reconstruction .What is more, the reducing of time is at the expense of reconstruction quality 
and should know the sparsity at first. 

The process of ROMP algorithm is to use regularization method to process biggest k 
inner products of sensing matrix   and residual y  and select one required element from the k 

inner products to reconstruct original signal. 
ROMP algorithm combines the regularization method with OMP algorithm to achieve 

the goal of selecting more elements in one iteration. ROMP algorithm can classify elements fast 
and select more elements in one iteration that is the reason why ROMP can get faster 
reconstruction speed than OMP algorithm. However, ROMP algorithm also has its own 
drawbacks. This article proposed a new algorithm which is based on ROMP algorithm but can 
achieve better performance in power quality analysis. 

 
2.2. Similarity and Threshold Regularized Orthogonal Matching Pursuit  

Traditional ROMP (Regularized Orthogonal Matching Pursuit, ROMP) algorithm is 
based on OMP (Orthogonal Matching Pursuit, OMP) algorithm and uses regularization method 
to select element. ROMP algorithm provides a new self-adaptive algorithm to achieve the goal 
of getting faster speed of classifying elements and reducing the time of signal reconstruction. 

Regularization method is a method which classifies elements according to the energy 
level of elements. Regularization method is described as followed: a set   |i NA x i I  

  1,2,...,NI N  is the index set of ix .Classifying all the elements follow the rule: 

 
 | | 2 | |, ,m n kx x m n I                                                            (1) 

 
And classifies index set I into several subsets   1,2,3...kI k and selects maximum 

energy subset 0I in the last, that is,  
0

max{ , 1,2,..., }
kI IX X k K . Regularization method can 

classify elements fast and select more elements in one iteration which brings ROMP algorithm 
faster reconstruction speed. 

However, ROMP algorithm has its own shortcomings. The algorithm is unreasonable 
that each time the algorithm can only select one group which has the maximum total energy to 
the candidate set and leaves other groups which have similar energy with the maximum total 
energy to the next iteration. ROMP algorithm brings a lot of redundant computation which is a 
waste of resources and demands for higher performance of equipments which leads to more 
equipment costs. In view of the whole iterative process, the tasks which can be done in one 
iterative are divided into several iterations, wasting the time and resources and decreasing the 
efficiency. 

This paper points out that the maximum total energy group and other groups which are 
similar to maximum total energy group and have similar energy with the maximum total energy 
group should be put into the candidate set in the same iteration. 

This paper proposed STROMP (Similarity and Threshold Regularized Orthogonal 
Matching Pursuit) algorithm which based on ROMP (Regularized Orthogonal Matching Pursuit) 
algorithm. STROMP algorithm changes the rules of selecting elements.  

The threshold parameter is a , energy is E , energy correlation is M and average 
energy correlation is S : 
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                                                                   (2) 

 
Where ix  is the member of set   | 1,2,3...iA x i N , N  is the total number of set A . 
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Where iE  is the energy of different vector iJ . 

Use regularization method to classify inner products of signal residual and sensing 
matrix into several groups 1 2 3, , ..., pJ J J J by energy. Calculate the energy 

  1 2 1 2, ,... ( ... )p pE E E E E E  of 1 2 3, , ..., pJ J J J therefore all the groups which energy are above 

1*a E  and the energy correlation ( 2,3,4... )iM i p  is above the average energy correlation S  

are selected to the candidate set in the same iteration. 
 
 

 
Figure 1. Flow Chart of Voltage/Current Signal Compressed Sensing 

 
 

The steps of STROMP algorithm are as follows: 
Inputs: Sensing signal y , sensing matrix , sparsity k  and threshold coefficient a  

In this way, the groups which would be selected in several iterations before are selected 
in one iteration, reducing the iteration times and avoiding unnecessary steps. 
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Initialization: Residual r0 = y, support set 0F  = , iterator t = 1. 

Step 1: 
Use regularization method to select k largest elements of inner product of residual and 

sensing matrix by absolute value. Mark the group 
1 2 3, , ..., pJ J J J  from largest to smallest by 

energy and the energy of 1 2 3, , ..., pJ J J J  is:  

 
  1 2 1 2, ,... ( ... )p pE E E E E E  . 

 
Step 2: 
Use S  and 1*a E  to classify the group 1 2 3, , ..., pJ J J J  which means that the groups 

which energy are above 1*a E  and the energy correlation M  between the group and 1E  is 

above average energy correlation S  are selected into the candidate set J . 
Step 3:  
Calculate the reconstruction signals by the least square method: 

  
2

argmin
tt x FX y x , and updating residual. 

  
  

tt F tr y x . 

 
Step 4: 
if 2n k ,then update the number of cycles 1t t   and go to step 1 or exit the loop. 

Output:
tFx y  ; 

The range of the threshold coefficient (0,1]a , in the research stage of this paper for 

power quality, the reconstruction effect will be best when the threshold value a is 0.6. 
According to the STROMP (Similarity and Threshold Regularized Orthogonal Matching 

Pursuit) algorithm, the flow of the reconstruction algorithm is shown in Figure 1: 
 
 

3. Experiment and Performance Analysis 
3.1. Research Criteria and Platform Design 

There is no unified standard in power quality generally and IEC definition for power 
quality is that power quality is the physical characteristics of power supply device’s not 
disturbing and interrupting user’s using electricity under normal working condition. Measuring 
the voltage current and power in single phase power grid in real time is help to study and 
analyze the characteristics of power quality. 

In stable condition of linear load, voltage and current signals are both sine waveforms in 
50Hz theoretically. But in unstable condition of nonlinear load, they are affected distorted by 
some inductances, capacitances, or other nonlinear factors. PQ Harmonics have N*50Hz 
frequency affected signals [15]. Voltage and current signals mainly consist of periodic or 
quasiperiodic signals in practical condition, and it exists a lot of information redundancy in 
periods or between periods. 

We will introduce several performance indexes: CSR (Compression Sampling Ratio), 
SNR (Signal to Noise Ratio), MSE (Mean Squared Error), and ERP (Energy Recovery 
Percentage) to objectively appraise the reconstructed results of PQ signals. 
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Where N  is total sampling number of original signals, 

cN  is the reserved sample number of 

signals after sparse sampling, and ˆ ( )f i  is the reconstructed signal. 

Based on theoretical research purposes mentioned above, we establish a set of smart 
meter test-bed with CS measurement. In Figure 2, this test-bed platform consists of three 
wireless nodes as smart meters, ZigBee wireless gateway, Ethernet router and terminal data 
server PC. For a single meter node, energy metering chip ADE7878 measures all information of 
single-phase load with internal hardware signal circuit and obtains voltage/current value, active 
power, reactive power, apparent power and etc. It transmits sampling data to STM32 system 
with SPI interface. STM32 system realizes PQ data storage with multi-tasking operating system 
(uC-OS). In ZigBee wireless network, the measuring node transmits all of PQ information to PC 
server. And we can configure node’s charging settings online with infrared remote controller. Its 
LCD display shows PQ parameters real-time dynamically. 

 
 

 
 

Figure 2. Smart Meter Test-bed with CS Measurement 
 
 

In order to compare the performances of MP algorithm, OMP algorithm, ROMP 
algorithm and STROMP algorithm, we do a lot of contrast experiments which is show form 
Figure 3 to Figure 14 and the performance indexes is show in Table 1. 

 
 

Table 1. Statistical Recovery Parameters of Compressing Voltage/Current Data from Different 
Reconstruction Algorithm 

MP algorithm SNR(dB) MSE (%) ERP (%) 

voltage of load 1 27.8448 4.0528 97.0766 

current of load 1 21.2720 8.6377 99.0027 

voltage of load 2 26.8008 4.5704 97.3575 

current of load 2 11.6741 26.0794 98.2753 
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OMP algorithm SNR(dB) MSE (%) ERP (%) 

voltage of load 1 33.7290 2.0585 99.5871 

current of load 1 21.7750 8.1518 99.2397 

voltage of load 2 36.1172 1.5636 99.0415 

current of load 2 19.4868 106087 99.6135 

 
ROMP algorithm SNR(dB) MSE(%) ERP(%) 

voltage of load 1 37.2835 1.5902 99.9720 

current of load 1 28.9687 3.5610 100.5346 

voltage of load 2 35.9712 1.6672 99.8083 

current of load 2 27.7210 4.1110 99.6759 

 
STROMP algorithm SNR(dB) MSE(%) ERP(%) 

voltage of load 1 43.0996 0.6999 100.1646 

current of load 1 38.3961 1.2028 100.2397 

voltage of load 2 42.0181 0.7927 99.9847 

current of load 2 37.2896 1.3662 99.9020 

 
 

 
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
Figure 3. Voltage Recovery Signal and Original Signal Comparison through Different Algorithms 

in Load 1: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm and  
(d) is STPOMP algorithm 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 4. The FFT Comparison of Voltage Recovery Signal and Original Signal through Different 
Algorithms in Load 1: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm and (d) 

is STPOMP algorithm 
 
 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 5. The Recover Error of Voltage Recovery Signal and Original Signal through Different 

Algorithms in Load 1: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm and d is 
STPOMP algorithm 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 6. Current Recovery Signal and Original Signal Comparison through Different Algorithms 
in Load 1: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm and (d) is STPOMP 

algorithm 
 
 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 7. The FFT Comparison of Current Recovery Signal and Original Signal through Different 
Algorithms in Load 1: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm and (d) 

is STPOMP algorithm. 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 8. The Recover Error of Current Recovery Signal and Original Signal through Different 
Algorithms in Load 1: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm and (d) 

is STPOMP algorithm 
 
 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 9. Voltage Recovery Signal and Original Signal Comparison through Different Algorithms 
in Load 2: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm and d is STPOMP 

algorithm 
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(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure 10. The FFT Comparison of Voltage Recovery Signal and Original Signal through 
Different Algorithms in Load 2: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm 

and (d) is STPOMP algorithm 
 
 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 11. The Recover Error of Voltage Recovery Signal and Original Signal through Different 
Algorithms in Load 2: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm and (d) 

is STPOMP algorithm 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 12. Current Recovery Signal and Original Signal Comparison through Different 

Algorithms in Load 2: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm and (d) 
is STPOMP algorithm 

 
 

 
(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 13. The FFT Comparison of Current Recovery Signal and Original Signal through 

Different Algorithms in Load 2: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm 
and (d) is STPOMP algorithm 
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 14. The Recover Error of Current Recovery Signal and Original Signal through Different 
Algorithms in Load 2: (a) is MP algorithm, (b) is OMP algorithm, (c) is ROMP algorithm and d is 

STPOMP algorithm 
 
 

3.2. Contrast Experiments of Different Algorithms  
In different load conditions, original sampling data in single-phase gird is send to PC 

terminal, and is regarded as raw data for CS recovery analysis with MATLAB. To show recovery 
effects under various load conditions, chip ADE7878 in smart meter is adopted to fixed 
sampling rate at 4KHz with two different loads. Load 1:1K linear resistor; Load 2: 5W nonlinear 
switching power load. 

According to the above experiments, we can see that no matter in which load, 
STROMP algorithm does much better than other classic matching pursuit algorithm. Contrast to 
the ROMP algorithm, STROMP algorithm does a great improvement in linear load, and has 
effect as great as ROMP algorithm in none linear load. Compare the original sampled signal 
with reconstruction signals, we can see that the reconstruction signal keep most of the harmonic 
components and each harmonic component is almost the same, which means that STROMP 
algorithm has great effect in the study and research of power quality. 

 
 

4. Conclusion 
This paper advances an improved reconstruction algorithm based on compressed 

sensing for power quality analysis in wireless sensor networks of smart grid. With the smart 
test-bed, real data is sparsely sampled and evaluated by STOMP algorithm. The sampling rate 
about voltage and current signals is up to 50% of the Nyquist’s. The reconstruction SNR of 
linear load is more than 43dB, and that of nonlinear load is more than 42dB. 

According to the experiments, STROMP algorithm reduces the data transmitted in the 
smart grid which can alleviate the burden of transmitting network and enhance the receive 
quality of signal. However, due to the different influences such as the limit of environment, the 
none linear load of single phase power grid of different customer and areas may increase the 
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difficulty of power quality measurements. In different environment we can get different 
performances. 
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