
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol. 12, No. 12, December 2014, pp. 8175 ~ 8192
DOI: 10.11591/telkomnika.v12i12.6332 8175

Received May 26, 2014; Revised September 28, 2014; Accepted October 15, 2014

The B+-tree-based Method for Nearest Neighbor
Queries in Traffic Simulation Systems

Zhu Song*1, Zhiguang Qin2, Weiwei Deng3, Yuping Zhao4
School of Computer Science & Engineering, University of Electronic Science and Technology of China,

Chengdu, China
*Corresponding author, e-mail: toni110@163.com1, zgqin@uestc.edu.cn2, uestcdengww@hotmail.com3,

zypuestc@live.com4

Abstract
Extensive used traffic simulation systems are helpful in planning and controlling the traffic system.

In traffic simulation systems, the state of each vehicle is affected by that of nearby vehicles, called
neighbors. Nearest neighbor (NN) queries, which are multi 1-dimensional and highly concurrent, largely
determine the performance of traffic simulation systems. Majority of existing traffic simulation systems use
Linked list based methods to process NN queries. Although simple and effective they are, existing
methods are neither scalable nor efficient. In this paper, we propose a B+-tree-based method to improve
the efficiency of NN queries by borrowing ideas from methods used in databases. In particular, we create a
linked local B+-tree, called LLB+-tree, which is a variation of Original B+-tree, to maintain the index of
neighbors of each vehicle. We also build a mathematical model to optimize the parameter setting of LLB+-
tree according to multiple parameters for lanes and vehicles. Our theoretical analysis shows that the time
complexity of the method is O(logN) under the assumption of randomly distribution of vehicles. Our
simulation results show that LLB+-tree can outperform Linked list and Original B+-tree by 64:2% and
12:8%, respectively.

Keywords:

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

The traffic simulation system is a mathematical modeling of transportation systems
through the application of computer software, which leads to better understanding, planing,
designing and optimizing the traffic system. Nearest neighbor (NN) queries play an important
role in traffic simulation systems, because each vehicle needs to find nearby vehicles, called
neighbors, and determine its state according to neighbors’ states.

It is difficult to improve the performance of NN queries because NN queries have the
following properties: 1) Multi 1-dimensional cases: if we consider a lane as a 1-dimensional
case, then a road with multiple lanes can be seen as infrequent multi 1-dimensional cases. 2)
High concurrency: the more vehicles exist in a simulation, the larger number of NN queries
occur in each cycle.

Existing traffic simulation systems, Paramics [16], Vissim [17], MITSim [18], SUMO [19]
etc, adopt Linked list-based methods to process NN queries. Such methods, which are very
easy to create and maintain, index the sequence of vehicles in each lane. However, those
methods are not scalable, because they need to traverse the Linked list to find a vehicle.
Videlicet, the time complexity of such methods is O(N).

In this paper, we propose a B+-tree-based method, called LLB+-tree (linked local B+-
tree) by borrowing ideas from those methods for 1 or 2-dimensional NN queries in databases. In
particular, we firstly index all vehicles in each road in a same direction, and implement the
bidirectional order of leaf nodes of Original B+-tree. We then maintain links of neighbors for
each vehicle in the same lane. We also build a mathematical model to optimize parameters
setting for LLB+- tree. Such a model caculates the min value of the expect query length
according to numbers of lanes and vehicles.

Our theoretical analysis shows that the time complexity of the LLB+-tree method is
O(logN). The optimal average query length can further improve the performance of the method.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8175 – 8192

8176

Our simulation results show that LLB+-tree can outperform Linked list and Original B+-tree by
64.2% and 12.8%, respectively.

Overall, the main properties of LLB+-tree are listed as follows:
a) LLB+-tree supports multiple query types, including range query and reverse nearest

neighbor (RNN) query.
b) LLB+-tree is efficient in NN queries in traffic simulation systems. The time

complexity of LLB+-tree based method is O(logN).
c) The maintenance overhead of LLB+-tree is acceptable, which is similar to that of

the Original B+-tree.
The rest of the paper is organized as follows. Section II gives an overview of the related

work. Section III defines NN queries in traffic simulation systems and introduces the data
structure of LLB+-tree. Section IV proposes algorithms for managing LLB+-tree. Section V
analyzes the time complexity of the method and optimizes parameters. Section VI evaluates the
performance of LLB+-tree through both experiments and statistical analysis. Section VII
concludes this paper.

2. Relative Work

In this section, we firstly overview methods for NN queries in databases. We then
describe methods for NN queries in traffic simulation systems.

2.1. NN Queries in Databases

NN queries, also know as proximity queries, similarity queries or closest point queries,
can be divided into two categories: the query for static and moving objects.

NN queries for static objects use index structures, including B-tree, B+-tree, quad-tree
and R-tree. Roussopoulos et al. [3] propose an influential method for finding the K-nearest
neighbors (KNN) using R-tree; Haibo Hu et al. devise EXO-tree to speed up NN queries [6]; HV
Jagadish et al. [7] propose a B+-tree based method, for KNN search in a high-dimensional
space; GR Hjaltason et al. [2] devise a general framework and algorithms for performing search
based on distance; a randomized algorithm for computing approximate nearest neighbor is
proposed by Arya et al. [8]. Ling Hu et al. [9] propose a road network KNN query verification
technique to prove the integrity of the query result. Seidl et al. [10] improve a KNN multi-step
algorithm which is guaranteed to produce the minimum number of candidates.

NN queries for moving objects mainly use similar index structures, including B+-tree
and TPR-tree. Kollios et al. [1] generalize moving objects in a plane, the movements of which
are restricted to a number of line segments, as a “1.5-dimensional” case [11]. Jensen et al. [12]
develops algorithms for NN queries whose performance is better than TPR-tree. Tao et al. [13]
solve the overhead problems in continuous nearest neighbor (CNN) queries. An algorithm which
requires only one dataset lookup to deliver a complete predictive result for CNN queries, is
devised by Lee et al. [14]. Xie et al. [15] provides a solution which supports different shapes of
commonly-used imprecise regions using u-bisector. Benetis et al. [11] propose algorithms for
responding RNN and NN queries for moving points in plane.

2.2. NN Queries in Traffic Simulation Systems

NN queries in traffic simulation systems aim to find at least 2 neighbors. When the
vehicle has no adjacent lane, it only need to find 2 neighbors in the local lane; When the vehicle
has one adjacent lane, it needs to find 4 neighbors: 2 in the local lane and 2 in the adjacent
lane. When the vehicle has both left and right adjacent lanes, it needs to find additional 2
neighbors in the other adjacent lane.

Although there has minor difference in the definition of neighbors in different simulation
systems (e.g., VISSIM [17] do not consider the nearest following vehicle in the local lane as a
neighbor), existing traffic simulation systems adopt similar linear methods (Linked list-based
methods) for NN queries. Paramics [16], a famous software which supports a simulation over 1
million vehicles, store vehicles currently in linear queues, regardless of lane; While in MITSim
[18], a simulator developed by MIT, vehicles are also stored in Linked list in each lane. SUMO
[19], an open source, highly portable, microscopic and continuous road traffic simulation
package, indexes vehicles in each lane in a linear queue.

TELKOMNIKA ISSN: 2302-4046

The B+-tree-based Method for Nearest Neighbor Queries in Traffic Simulation… (Zhu Song)

8177

Those Linked list-based methods, very cheap in creating and maintaining, are suitable
to simulate sparse traffic conditions. However, such methods are not scalable because they
need to traverse the Linked list to search a vehicle. Videlicet, the more vehicles in a simulation,
the worse performance of those methods.

3. Problem Statement and Data Structures

In this section, we firstly analyze the applicability of traditional methods for 1 and 2-
dimensional NN queries in traffic simulation systems. We then propose formal descriptions of
such NN queries. At last, we introduce the data structure of B+-tree, double Linked list, LLB+-
tree and compare the details of them.

3.1. Applicability Analysis

We use an example to explain why traditional methods for 1 or 2-dimensional NN
queries are not suitable for traffic simulation systems.

Figure 1. 8 vehicles in a three-lane road segment

Figure 1 is a segment of a road. There are 8 vehicles distributed in 3 lanes: vehicles A
and B in lane 1; vehicles C, D and E in lane 2; vehicles F, G and H in lane 3. When vehicle D
launchs a NN query, called the initiator, it needs to find 6 neighbors: the nearest leading and
following vehicles C and E in the local lane (lane 2); A and B in the left adjacent lane (Lane 1);
G and H in the right adjacent lane (lane 3).

If we adopt a method for 1-dimensional NN queries, we consider each lane as a linear
space. In order to find the nearest vehicles in each lane, we create virtual initiators D′ and D′′
with the same displacement of D separately in the left and right adjacent lanes. Thus, the
method find the 2 nearest vehicles of D, D′ and D′′ in the local, left adjacent and right adjacent
lanes, respectively. However, these vehicles may not be the correct neighbors. The 2 nearest
vehicles of D′′ in lane 3 are G and F, while the neighbors are G and H.

If we use a method for 2-dimensional NN queries, we consider a whole road as a plane.
Such a method can find the 6 nearest vehicles of the initiator D. While these vehicles may not
be the neighbors either. As shown in Figure 1, the 6 nearest vehicles are A, B, C, F, G and H.
Vehicle F is more closer to D than vehicle E, but F is not a correct neighbor.

3.2. Problem Statement

We denote V as the set of all vehicles in a L-lanes road, is the th vehicle. We can

further use two properties, the displacement of a vehicle in the road and the lane
where the vehicle located to describe each vehicle. That is, can be described

in a tuple . To find neighbors of , we divide V into two sets according to the

displacement . One is the set of leading vehicles: ; The other is

the set of following vehicles: . The neighbors of vi include the
nearest leading and following vehicles in the local and two adjacent lanes.

That is, a NN query contains following 3 steps:

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8175 – 8192

8178

1) We find the neighbors of the vehicle in the local lane. The nearest leading vehicle of
vi in the local lane is the element with the minimize in the set : the vehicle

. The nearest following vehicle of vi in the local lane is the element with the
maximize of the set : the vehicle .

2) If there exists a left adjacent lane, we find the neighbors in that lane. The nearest
leading vehicle of in the left adjacent lane is the element with the minimize in the set

: the vehicle . The nearest following vehicle of vi in the left adjacent
lane is the element with the maximize of the set : the vehicle 1).

3) If there exists a right adjacent lane, we find the neighbors in that lane. The nearest
leading vehicle of in the right adjacent lane is the element with the minimize in the set

: the vehicle . The nearest following vehicle of vi in the right adjacent
lane is the element with the maximize of the set : the vehicle 1).

3.3. Data Structure of LLB+-tree

The LLB+-tree (Linked local B+-tree), a variation of B+- tree, is a combination of B+-tree
and Linked list.

Linked list-based methods index vehicles in each lane, while B+-tree based methods
index vehicles in each road. Using an example of a road segment shown in Figure 1, we can
build three Linked lists. As shown in Figure 2, each Linked list stores vehicles orderly in a same
lane. Figure 3 tells the mapping scheme of LLB+-tree using the same road segment. According
to the displacement of vehicles in the road, we can map the distribution of the 8 vehicles into a

1-dimensional queue: .

Figure 2. An example of double Linked list Figure 3. Mapping vehicles into 1-dimensional
coordinate

LLB+-tree mainly modifies the structures of internal nodes and leaf nodes. In internal
nodes, we implement the bidirectional order of each node to facilitate multi query types. In
particular, we create 2 pointers to link the previous and next internal nodes, denote as
and , respectively. Each internal node has key values and + 1 children. The

structure of each internal node is printed below, where denotes the ith key value, Pi points
the ith child:

In leaf nodes, we maintain the thread of the neighbors of each entity (vehicle). In

particular, we create 2 pointers in each entity to link the vehicle’s neighbors in the local lane,

denote as and . Thus, each entity has 4 domains: the ith key value , the

vehicle data , neighbors and . Each leaf node is formed by entities and
two pointers: and , which point to the previous and next leaf nodes. The structure
of each leaf node is of the form:

TELKOMNIKA ISSN: 2302-4046

The B+-tree-based Method for Nearest Neighbor Queries in Traffic Simulation… (Zhu Song)

8179

Using the sample of the distribution of 8 vehicles, the 1-dimensional queue

, we build a LLB+-tree, shown in Figure 4.

Figure 4. An example of a LLB+-tree

As a combination of B+-tree and Linked list, LLB+-tree inherits a lot of advantages: data
points are stored only at the leaf nodes. These leaf nodes are similar to the first (base) level of
an index. Internal nodes of B+-tree correspond to the other levels of a multilevel index [20]. B+-
tree implementation retains the logarithmic cost properties for operations by key, but gains the
advantage of requiring at most 1 access to satisfy a next operation [21]. Just like Linked list,
LLB+-tree also maintains the threads of the nearest leading and nearest following neighbors of
each vehicle in the local lane, which facilitate NN queries in that lane.

4. Algorithms Optimization
In this section, we adopt the replacement of a vehicle in the road as its search key value

in a LLB+-tree. we propose three sub-algorithms for the management of the LLB+-tree,
including searching, inserting and deleting.

4.1. Searching

This sub-algorithm searches neighbors of a vehicle in the local lane and adjacent lanes.

The search key value of vehicle i is , the lane of vehicle i is . In LLB+-tree, data points are

stored only at leaf nodes. Thus, we use a function to implement the searching
process from root node to the objective leaf node. The sub-algorithm includes two NN queries:

the NN queries in the adjacent lane and in the local lane . Neighbors in

the local lanes indicate the nearest leading vehicle and the following vehicle .

 and are respectively the nearest leading and following vehicles in the adjacent
lane.

The sub-algorithm mainly contains following two steps: 1) It searches the leaf node and
find the neighbors of a vehicle in the local lanes; 2) It searches related leaf nodes and find the
neighbors of a vehicle in the adjacent lane if needed. The pseudo-code of the algorithm is
shown in Algorithm 1.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8175 – 8192

8180

4.2. Inserting

TELKOMNIKA ISSN: 2302-4046

The B+-tree-based Method for Nearest Neighbor Queries in Traffic Simulation… (Zhu Song)

8181

This sub-algorithm illustrates the procedure for inserting a record (vehicle) with a search

field value in LLB+-tree. Algorithm 2 gives a detailed pseudo-code of the subalgorithm. We

denote and as the pointers and of the nearest
following and leading vehicles of i, respectively.
We can further divide this sub-algorithm into two parts: 1) It create entry of vehicle i in correct
leaf node and updates relative pointers; 2) It updates internal nodes to maintain the right
structure of LLB+-tree. When a node is full it will split and when the parent node also be full, the
splitting can propagate all way up to create a new level for LLB+-tree.

4.3. Deleting

This algorithm illustrates deleting a record with a search field value from a LLB+-
tree. When deleting an entry, we should always remove it from the leaf level. If the entry is in an
internal node, we must also remove it from there.

The algorithm contains three parts: 1) It searches internal nodes recursively to find the
path according to the search field value Ki. When the search field value occur in an internal
node, we use a left (or right) entry to replace it; 2) It deletes the entry of the vehicle in correct
leaf node and updates relative pointers; 3) It updates the leaf node by merging and
redistributing sibling nodes when there exists node underflow; 4) When the merge and
redistribute in leaf nodes leads to an underflow of a internal node, the internal node will also
merge and redistribute to maintain the structure of the LLB+-tree. We give the pseudo-code of
the algorithm in Algorithm 3.

5. Parameters Optimization
In this section, we firstly analyze those parameters that effect on the hit rate of NN

queries. We then analyze the time cost of LLB+-tree based method and build a mathematical
model to optimize the node size of the LLB+-tree.

5.1. Hit Rate Analysis

In a LLB+-tree, data pointers are stored in leaf nodes. For better understanding, we call
vehicles in a leaf node as a “platoon”. Under the assumption of randomly distribution of vehicles,
the performance, the expect query length ϵ of a NN query is determined by the hit rate of a
query P in a platoon. Further, the hit rate P is influenced by the average amount of vehicles in a
platoon q. Thus, we compute the optimized value of q to minimize the expect query length ϵ of a
NN query.

To calculate P, we assume that there are N vehicles randomly distributed in L lanes.
We can use a q×L matrix A to describe possible distributions of q vehicles. Each element in the
matrix is a possible position for a vehicle. In example, aij is the ith position in the jth lane.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8175 – 8192

8182

When we query neighbors of vehicle aij in adjacent lanes, there exist two different

situations while the road has at least 3 lanes.

The first situation is, vehicle aij is in an edge lane of a road (the or
when). It needs to query neighbors in the only adjacent lane, that are vehicles in

.
In this case, we calculate PA, the possibility of finding a neighbor in the adjacent lane of

vehicle aij in the platoon. We can compute the possible distributions of all other q − 1 vehicles

(except vehicle aij in the edge lane) that are not distributed in the adjacent lane: .

The total possible distributions of q−1 vehicles is . Thus, we can calculate PA using the
following formula:

The second situation is, vehicle aij is in a mid lane (the lane 1 < j < L when L > 2). In

this case, vehicle aij has both left and right adjacent lanes. Therefore, we need to query

neighbors in two adjacent lanes, that are vehicles in and

.
We denote PB as the probability of finding neighbors of vehicle aij in both adjacent

lanes. To calculate PB, we also define P′B, the probability of all other q − 1 vehicles that are not
distributed in those adjacent lanes. When we do not consider distributions of vehicles in one

adjacent lane, The distributions of vehicles exist in another adjacent lane is: .
According to principle of inclusion-exclusion, the general form of which is shown as follow:

P′B can be given by excluding the overlap distributions :

Thus, we can compute PB as follow:

In general, we can conclude the hit rate P of a NN query in adjacent lanes in 3 cases: 1)

When the road has only 1 lane, vehicles don’t have to query neighbors in adjacent lanes. 2)
When the road has 2 lanes, vehicles only have to query neighbors in one adjacent lane. 3)

TELKOMNIKA ISSN: 2302-4046

The B+-tree-based Method for Nearest Neighbor Queries in Traffic Simulation… (Zhu Song)

8183

When the road has more than 2 lanes, we need to consider two situations: vehicles in edge
lanes and in mid lanes. We list the formula of P as follow:

We also summarise the relationship among the hit rate P, average number of vehicles
in a platoon q and number of lanes L, which is shown in Figure 5. The observation shows that in
common roads conditions, a road with L lanes 1 < L ≤ 10, The rate of convergence of P is
diminishing with the increasing of L.

Figure 5. The relationship among L, q and P

5.2. Time Cost Analysis

Being a variation of B+-tree, we can find vehicle i in LLB+-tree spending O(logz N) time,
where N is the number of vehicles in the road; z is the minimize number of children in each
internal node.

When querying neighbors of vehicles i in the local lane, we can directly obtain them by

pointers and . That is, we can find neighbors of vehicle i in the local lane
also in O(logz N) time.

When querying neighbors of vehicle i in the adjacent lanes, we use the expect query
length ϵ to measure the efficiency of the query. Such a query search neighbors by traversing all
vehicles in each platoon. The expect query length of finding a vehicle in a platoon by traversing

is . The expect query length of finding the object neighbor in the local platoon is: and in

the next platoon is: . We can summarize the expect query length ϵ of finding
the object vehicle in the kth platoon is:

The number of leaf nodes (platoons) in a LLB+-tree can be express by . We can
describe the expect query length ϵ of finding neighbors in all platoon as follow:

We can simplify the formula using following methods:

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8175 – 8192

8184

By using geometric series, we can find:

Thus, the expect query length ϵ can be simplified as follow:

For a certain road, L is a constant, and P is rapid convergence to 1 with the increasing

of the number of vehicles in the platoon q. For a certain L, we can get an acceptable P with
limited q. Therefore, q is also considered as a constant in this case. Thus, the limitation

, and we can also calculate the limitation of ϵ:

As a result, we can also find the neighbor of vehicle i in the adjacent lane in logz N time,
under the assumption of randomly distribution of vehicles. The relationship among the number
of lanes L, expect (average) number of vehicles in one platoon q and the expect query length of
finding neighbors in the adjacent lanes ϵ with an enough large N (we adapt N = 1000 in this
case) is shown in Figure 6. The curve called skyline is a line connecting every points, the
minimum value of ϵ of all curves, shows the optimal choice and the variation trend of q with the
increasing number of lanes L.

Figure 6. The relationship among L, q and ϵ

We also analyze the impact of the number of vehicles N, our research shows that there
exists threshold values of N for a certain pair of amount of lanes L and average amount of
vehicles in a platoon q. When N is larger than the threshold value, the expect query length ϵ for

TELKOMNIKA ISSN: 2302-4046

The B+-tree-based Method for Nearest Neighbor Queries in Traffic Simulation… (Zhu Song)

8185

NN queries in the adjacent lanes are converging to fixed values. Otherwise, the query length is
decreasing with the lower amount of N. That is, the threshold line divide N into two intervals.
The upper interval indicates that the query can be responded in constant time no matter how
large the N is. While the lower interval shows that the query can be responded much quicker
when N is smaller than the threshold value. The relationship among N, L and ϵ with the
corresponding optimal q is shown in Figure 7. The value of thresholds of N and the skyline of q
for each L is shown in Table 1. Note that the expect query length ϵ in Table 1 do not contain the
query length from the root node to the leaf node.

Figure 7. The relationship among L, N and ϵ

Table 1. The Threshold Of N And Skyline Of Q For Minimum ϵ

5.3. Node Size Optimization

In order to reduce the frequency of the spliting/merging process and maintain the time
complexity of the LLB+-tree method, we need to optimize another important parameter of LLB+-
tree: the minimize number of children (subtrees) in internal nodes z. It is important because z
determines the value range of q. In particular, the value of q must larger than the lower bound of
the leaf node’s size z − 1 and lower than the upper bound 2z − 1 according to the rule of B+-tree
based method.

For each optimized q, we need to calculate the optimal value of the corresponding z.
We can find that for each q, there exist multi possible values of z. Thus, we need to calculate
the optimal value of the corresponding z for each optimized q. Here we compare the expect
query length ϵ for each possible z using following method:

For a certain q, we can find the value range of the corresponding

; For each zi, we can find the value range

of the possible . Thus, we can calculate the
expect query length of qij , denoted as ϵ(qij). By comparing ϵi, the average value of the sum of
ϵ(qij) for each zi, we can compute out the optimized zi, whose ϵi has the minimized value. The
formula is shown as follow:

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8175 – 8192

8186

The optimal z with minimum ϵ when N = 250 and N = 1000 is shown in Table 2. We can

see that the the optimal value of z is only a little influenced by N, and the expect query length ϵ
as a minor increasing with the increasing of N, which shows the strong scalability of LLB+-tree.
We also find that the lower the number of L, the more obvious the impact of N. Nevertheless,
there exist load limitations of each road, which is not mentioned in our study. That is, the
extreme case that a astronomical number of vehicles congest in a limit L road will never
happen.

Table 2. The Optimal Z with Minimum ϵ when N = 250 and N = 1000

6. Performance Experiments
In this section, we process simulation experiments to evaluate the performance of

Original B+-tree, Linked list and LLB+-tree.

6.1. Experiments Setting
Our experiment is based on a simulation using the backbone network of a section of

Chengdu city with 22 roads, the network of which is shown in Figure 8. To facilitate
experiments, the simulation network is set to be closed, which means the amount of vehicles is
fixed. In our simulation, vehicles have only 4 operations in a simulation cycle: 1) The NN query
in the local lane. 2) The NN query in the objective adjacent lane. 3) The operation of leaving a
lane. 4) The operation of joining in a lane (the leave and join operations are used both in
lanechanging and road-switching process).

(a) Objective section

(b) Simulation network

Figure 8. The objective section and corresponding simulation network

TELKOMNIKA ISSN: 2302-4046

The B+-tree-based Method for Nearest Neighbor Queries in Traffic Simulation… (Zhu Song)

8187

There exist three uncorrelated variable parameters in our experiments: the number of
vehicles in each road N; the number of lanes L and the lane-changing rate Pc. Note that Pc does
not refers to the rate of successful lane-changes or lane-changing processes, Pc means the
average possibility of a vehicle query neighbors in the objective adjacent lane in one simulation
cycle. In this paper, we consider the average time cost (response time) of the simulation of each
vehicle in one cycle (Tresponse) as an indicator to evaluate the performance of different methods.
Ti denotes the simulation time cost of each vehicle i, and Tresponse is the time cost in average.
Thus, the formula of Tresponse is described as follow:

To reduce the error of the simulation, we adopt the average Tresponse from 100

simulation results. The time cost Tresponse is affected by N, L and Pc, thus we can describe it in
this form: Tresponse = f(Pc,N,L). Due to the difficulty of analyzing the variation of Tresponse
through three variable parameters simultaneously, we adopt two sets of empirical values (a
lower and an upper set of values according to common traffic conditions) for these three
parameters: the lane-changing rate Pc ∈ {30%, 60%}; the number of lanes L ∈ {3, 6}, the
number of vehicles in each road N ∈ {250, 1000} (both larger than corresponding threshold
values). To facilitate experiments, we assume that the number of vehicles in each road are all
N.

In our experiments, the simulation platform is a self developed microscopic simulation
system called DMTSS. The car-following model we adapted is Pipes model and the platform is
running on a Acer Veriton D430 computer with i3 CPU 3.40GHZ and 4GB DDR3 SDRAM.

6.2. Contrast Experiments

In this part, we plan three sets of experiments using relative empirical high and low
parameters to evaluate the performance of three methods. 1) Linked list: a typical linear index
structure widely adopted in simulation systems. 2) Original B+-tree: B+-tree with bidirectional
sorting in leaf nodes. 3) LLB+-tree: a variation of B+-tree proposed in this paper for multi 1-
dimensional cases with optimal parameters.

1) The impact of lane change rate: The lane-changing rate Pc, the possibility of a
vehicle querying neighbors in adjacent lanes in one simulation cycle, is an important parameter
in traffic simulation systems. This set of experiments is to show the performance of three
methods with the increasing of Pc using different combinations of empirical high and low
parameters N ∈ {250, 1000} and L ∈ {3, 6}. The contrast experiments of the impact of Pc are
shown in Figure 9, 10, 11 and 12.

Figure 9. Tresponse with N = 250, L = 3 and
variable Pc

Figure 10. Tresponse with N = 250, L = 6 and
variable Pc

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8175 – 8192

8188

Figure 11. Tresponse with N = 1000, L = 3 and
variable Pc

Figure 12. Tresponse with N = 1000, L = 6 and
variable Pc

Figure 9 shows the response time Tresponse with low N and low L. In this condition,
Linked list has a well performance when the lane-changing rate Pc ≤ 30%. When Pc reaches to
50%, the performance of Linked list is getting worse compared with other methods. The
performance of LLB+-tree is better than that of Original B+-tree when Pc ≤ 80%, after that the
Tresponse of Original B+-tree is better. Figure 10 shows Tresponse with the low N and high L. In
this condition, the advantage of Linked list is more distinctly: the lower Pc, the better
performance of Linked list. Besides, the performance of Original B+-tree and that of LLB+-tree
are less effected by the increasing Pc, and the performance of LLB+-tree is better than that of
Original B+-tree when Pc ≤ 70%. Figure 11 shows the Tresponse with the high N and low L.
Compared with Figure 9, we can see that with the same L, the increasing Pc leads to the worse
performance of Linked list compared with that of other two methods. Figure 12 shows Tresponse
with the high N and high L. With the same N in Figure 11, Linked list is getting better in high L,
because vehicles in each lane are stored in one list, the higher L, the less number of vehicles in
one list.

The result of this set of experiments shows that in most conditions of Pc, the
performance of LLB+-tree is better than that of Original B+-tree. Only in some very high Pc
cases, Original B+-tree is better. Besides, the efficiency of Linked list in some low Pc cases is
unsurpassable.

2) The impact of the number of vehicles: We evaluate the performance of three
methods with the variation of the number of vehicles N. In a simulation, the number of vehicles
N is limited by the length and the number of lanes L of the road. We use similar method to
analyze the impact of the number of vehicles N using the combination of the high and low
parameters Pc and L. The contrast experiments of the impact of N are shown in Figure 13, 14,
15, and 16.

Figure 13. Tresponse with Pc = 30, L = 3 and
variable N

Figure 14. Tresponse with Pc = 60, L = 3 and
variable N

TELKOMNIKA ISSN: 2302-4046

The B+-tree-based Method for Nearest Neighbor Queries in Traffic Simulation… (Zhu Song)

8189

Figure 15. Tresponse with Pc = 30, L = 6 and
variable N

Figure 16. Tresponse with Pc = 60, L = 6 and
variable N

Figure 13 shows the Tresponse with the low Pc and low L. We can see that the
performance of LLB+-tree is completely better than that of Original B+-tree in this condition.
Besides, for majority values of N, LLB+-tree is the most efficient method. Figure 14 shows the
Tresponse with the high Pc and low L. Linked list in this case has no superiority compared with
other methods, while LLB+-tree is the best method with these parameters. Figure 15 shows the
Tresponse with the low Pc and high L. When N ≥ 400, LLB+-tree is better than Linked list, while
Original B+-tree is only better than Linked list when N ≥ 800. Figure 16 shows the Tresponse with
the high Pc and high L. Linked list also depicts the defect of scalability with the increasing N.

The result of experiments on the impact of N shows that the Tresponse of Linked list is a
linear growth with the increasing N, while other two methods shows better scalability. With these
parameters, LLB+-tree is completely better than Original B+-tree and it is also better than
Linked list in most cases.

3) The impact of the number of lanes: In this set of experiments, we try to evaluate the
impact of the number of lanes L to Tresponse with the high and low parameters Pc and N. The
results are shown in Figure 17, 18, 19 and 20.

Figure 17. Tresponse with Pc = 30, N = 250 and
variable L

Figure 18. Tresponse with Pc = 60, N = 250 and
variable L

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8175 – 8192

8190

Figure 19. Tresponse with Pc = 30, N = 1000 and
variable L

Figure 20. dTresponse with Pc = 60, N = 1000
and variable L

Figure 17 depict the Tresponse with the low Pc and low N. With these parameters, Linked
list is no doubt the best method. Meanwhile, the performance of LLB+-tree is better than that of
Original B+-tree. Figure 18 depict the Tresponse with the high Pc and low N. With the increasing
of L, LLB+-tree and Original B+-tree are gradually approaching to each other, the performance
of which are better than that of Linked list when L ≤ 8. Figure 19 shows the Tresponse with the low
Pc and high N. In this case, LLB+-tree has better performance than all other methods. Figure 20
shows the Tresponse with the high Pc and high N. The performance of LLB+-tree and Original B+-
tree are gradually approaching to each other with the increasing of L just like that in Figure 18.
We conclude the impact of L as follow: there exist cases (low Pc and low N) that fit Linked list
most; LLB+-tree generally “controls” Original B+-tree. While in high Pc cases the performance of
LLB+-tree is approaching to that of Original B+-tree with the increase of L.

4) Evaluations: Although the contrast experiments of three methods show that LLB+-
tree is efficient in most traffic conditions, we evaluate their performance using statistical analysis
of simulation data. Such simulation data contain three sets of parameters separately describe
congested, normal and sparse traffic conditions, the parameters setting of which are shown in
Table 3. For each combination of parameters in a same traffic condition, we take 100 results
into account. The basic statistical information of totally 24,300 samples from congested, normal
and sparse simulation data are shown in Table 4.

Table 3. Parameters Setting for Common Traffic Conditions

Table 4. The Basic Statistical Information of Simulation Data

The average Tresponse, the main indicator to evaluate the performance of different

methods, shows that LLB+-tree outperforms Original B+-tree by 12.8%, and the performance of
LLB+-tree is increased by 64.2% compared with that of Linked list. The variances indicate that
Original B+-tree is more stable than LLB+-tree while the difference is not that obviously. The

TELKOMNIKA ISSN: 2302-4046

The B+-tree-based Method for Nearest Neighbor Queries in Traffic Simulation… (Zhu Song)

8191

result shows that LLB+-tree is better than Original B+-tree when there has not demand strict the
range of Tresponse.

For better understanding the performance of these methods, we analyze the total
possible frequency distributions of Tresponse of different methods from simulation data with all
possible combination of parameters: N ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000},
Pc ∈ {0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%} and L ∈ {2, 3, 4, 5, 6, 7, 8,
9, 10}. The distribution of Linked list is shown in Figure 21 with Original B+-tree shown in Figure
22 and LLB+-tree shown in Figure 23. Note that in this case we haven’t consider the weight
(possibility) of each combination of parameters that would occur in real cases. The figure is only
to display the range of possible Tresponse for different methods (e.g., a condition with N = 100, L =
10 and Pc = 100% is extremely infrequent in real cases).

Figure 21. Range of Tresponse with Linked list Figure 22. Range of Tresponse with Original B+-
tree

Figure 23. Range of Tresponse with LLB+-tree

We can see that the distribution of Tresponse with Linked list is scattered from 1ms to
3643ms, while Original B+-tree scattered from 71ms to 521ms, LLB+-tree scattered from 33ms
to 597ms.

In collusion, although Linked list-based methods are suitable in some cases (e.g., in
some sparse traffic conditions), the distribution of Tresponse prove that they are not suitable for
large-scale simulations. According to simulation experiments and statistical analysis, the result
shows that LLB+-tree is more suitable in most traffic conditions.

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8175 – 8192

8192

6. Conclusion
In this paper, we design and implement the LLB+-tree for NN queries in traffic

simulation systems. Such a LLB+-tree is suitable to multi 1-dimensional and highly concurrent
NN queries. We then propose three sub-algorithms to manage a LLB+-tree and build
mathematical models to optimize parameters settings. We also propose a theoretical analysis to
estimate the time complexity of the method. The result of simulation experiments and statistical
analysis show that LLB+-tree is efficient for NN queries in traffic simulation systems. In
particular, LLB+-tree can save 64.2% and 12.8% response time respectively compared with
Linked list and Original B+-tree.

References
[1] Kollios G, Gunopulos D, Tsotras VJ. Nearest neighbor queries in a mobile environment. Spatio-

Temporal Database Management. Springer Berlin Heidelberg, 1999: 119-134.
[2] Hjaltason GR, Samet H. Index-driven similarity search in metric spaces (survey article). ACM

Transactions on Database Systems (TODS). 2003; 28(4): 517-580.
[3] Roussopoulos N, Kelley S, Vincent F. Nearest neighbor queries. ACM sigmod record. ACM. 1995;

24(2): 71-79.
[4] Katayama N, Satoh S. The SR-tree: An index structure for high dimensional nearest neighbor queries.

ACM SIGMOD Record. ACM. 1997; 26(2): 369-380.
[5] White DA, Jain R. Similarity indexing with the SS-tree. Data Engineering. Proceedings of the Twelfth

International Conference on. IEEE. 1996: 516-523.
[6] Hu H, Lee DL. Range nearest-neighbor query. Knowledge and Data Engineering. IEEE Transactions

on. 2006; 18(1): 78-91.
[7] Jagadish HV, Ooi BC, Tan KL, et al. iDistance: An adaptive B+-tree based indexing method for

nearest neighbor search. ACM Transactions on Database Systems (TODS). 2005; 30(2): 364-397.
[8] Arya S, Mount DM. Approximate nearest neighbor queries in fixed dimensions. Proceedings of the

fourth annual ACM-SIAM Symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics. 1993: 271-280.

[9] Hu L, Jing Y, Ku WS, et al. Enforcing k nearest neighbor query integrity on road networks.
Proceedings of the 20th International Conference on Advances in Geographic Information Systems.
ACM, 2012: 422-425.

[10] Seidl T, Kriegel H P. Optimal multi-step k-nearest neighbour search[C]//ACM SIGMOD Record. ACM,
1998; 27(2): 154-165.

[11] Benetis R, Jensen CS, Karciauskas G, et al. Nearest neighbor and reverse nearest neighbor queries
for moving objects. Database Engineering and Applications Symposium. Proceedings. International.
IEEE. 2002: 44-53.

[12] Jensen CS, Lin D, Ooi BC. Query and update efficient B+-tree based indexing of moving objects.
Proceedings of the Thirtieth international conference on Very large data bases-Volume 30. VLDB
Endowment, 2004: 768-779.

[13] Tao Y, Papadias D, Shen Q. Continuous nearest neighbour search[C]//Proceedings of the 28th
international conference on Very Large Data Bases. VLDB Endowment. 2002: 287-298.

[14] Lee KCK, Leong HV, Zhou J, et al. An efficient algorithm for predictive continuous nearest neighbor
query processing and result maintenance. Proceedings of the 6th international conference on Mobile
data management. ACM, 2005: 178-182.

[15] Xie X, Yiu M L, Cheng R, et al. Trajectory Possible Nearest Neighbor Queries over Imprecise Location
Data. 2012.

[16] Cameron GDB, Duncan GID. PARAMICSłParallel microscopic simulation of road traffic. The Journal
of Supercomputing. 1996; 10(1): 25-53.

[17] Fellendorf M. VISSIM: A microscopic simulation tool to evaluate actuated signal control including bus
priority. 64th Institute of Transportation Engineers Annual Meeting. 1994: 1-9.

[18] Yang Q, Koutsopoulos HN. A microscopic traffic simulator for evaluation of dynamic traffic
management systems. Transportation Research Part C: Emerging Technologies. 1996; 4(3): 113-129.

[19] Krajzewicz D, Bonert M, Wagner P. The open source traffic simulation package SUMO. RoboCup
2006 Infrastructure Simulation Competition. 2006; 1: 1-5.

[20] Elmasri R. Fundamentals of database system. Pearson Education India, 2008.
[21] Comer D. Ubiquitous B-tree. ACM Computing Surveys (CSUR). 1979; 11(2): 121-137.

