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Abstract 
Nowadays, the urban traffic modeling, which is helpful in planning and controlling the traffic 

system, has becoming a research hotspot of traffic engineering. After decades of research and 
development, there now exists hundreds of models choosing different modeling methods to simulate the 
traffic flow. It is important for us to understand these models by classifying them and analyzing their 
features. The features of traffic models, including the scalability, accuracy and computability, are becoming 
important indicators to measure their performance. In this paper, we introduce and compare some 
grounded models. In particular, we analyze the advantages and disadvantages of existing models, and 
classify them into three categories according their granularity: macroscopic, mesoscopic and microscopic 
models.  
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1. Introduction 
With the increasing number of vehicles, the urban traffic system faces many problems 

one of which is traffic congestion becoming more serious day after day. The urban traffic 
modeling is helpful for mitigating traffic congestion, because it allows us to better understand, 
plan, design and optimize the traffic system. There exist hundreds of urban traffic models, which 
choose different kinds of methods, such as probability and statistics, differential equations and 
numerical methods. It is necessary to classify these traffic models for comparing their 
advantages and disadvantages.  

According to the model granularity, which is the level of detail considered in the model, 
we classify traffic models into three categories, macroscopic, mesoscopic (hybrid) and 
microscopic (sub-microscopic) models. 

Macroscopic models view all vehicles as a whole, and study the characteristics of the 
entire traffic flow. In particular, they measure the variation of traffic flow parameters, which 
include flow rate, velocity and density, and analyze the relationship among these parameters. 
Although these models can describe the variation of some traffic phenomena (e.g., the stop-
and-go wave), they cannot explain the formation of these phenomena due to the ignorance of 
the individual vehicle’s behavior. We divide macroscopic models into two categories, time-
independent static models and time-related dynamic models, according to the correlation of 
time. The time-related dynamic models consider the effect of space and time correlation, and 
thus, they could be more realistic than time-independent static ones in some cases. Typical 
time-related dynamic models (e.g., LWR mode) apply the fluid dynamics, which is a theory 
of fluid mechanics that deals with the natural science of fluids (liquids and gases) in motion, to 
characterize the variation of the traffic flow.  

Mesoscopic models assume a set of nearby vehicles as a unit, a so-called “platoon”, 
and describe the inflow and outflow of each platoon. Specifically, these models study the 
common behavior of vehicles in a same platoon. We group mesoscopic models into two 
categories: gas-kinetic models and hybrid models. The first gas-kinetic model proposed by 
Prigogine and Herman applies the gas-dynamics, which is a law that explains the behavior of a 
hypothetical ideal gas, to describe the platoon. Hybrid models usually combine different models 
(e.g., a microscopic model mixed with a mesoscopic model) to combine their advantages and 
remedy their disadvantages. 
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Microscopic models focus on the behavior of individual vehicles, and study how one 
vehicle dynamically interacts with another. These models attempt to describe the overall 
characteristics of the system by integrating the characteristic of each individual vehicle. 
Microscopic models have three categories: car-following models, cellular automaton models 
(particle hoping models) and sub-microscopic models. Car-following models analyze the vehicle 
following behavior in one lane. Cellular automaton models view individual vehicles as self-driven 
particles, which is a collection of particles respond to a random perturbation by the motion of the 
other nearby particles. Compared with other two kinds of models, sub-microscopic models 
describe more details, such as driver’s psychological reactions, response to the traffic and car 
lights, etc.  

This paper classifies traffic models mainly in model granularity. And we respectively 
introduce some important models of each type and summarize the characteristic of these 
models in section macroscopic models, mesoscopic models and microscopic models. At the 
end of each section we list the comparison of the advantage, disadvantage, applicable 
environment and modeling methods of the most important models. Besides, there’s a 
conclusion about characteristics of existing models at the end of this article.  

 
 

2. Macroscopic Models 
Macroscopic models consider traffic flow as an entirety and they do not care about the 

behavior of individual vehicles. These models contain static macroscopic models and dynamic 
macroscopic models. The standard static models include the recursive model, the start-arrive 
model and the start-destination model. The dynamic models contain the first-order continuum 
model (e.g., the LWR model), and second-order continuum models such like the Payne model 
and the Papageorgiou model. The classification of macroscopic models is shown in Figure 1. 

 
 

 
 

Figure 1. The Classification Figure of Macroscopic Models 
 
 

2.1. Static Macroscopic Models 
Static macroscopic models research on the time-independence relationship among 

traffic parameters such as traffic flow velocity ( )v x , flow rate ( )q x  and density ( )x  at the 

traffic flow location x . There are three important Static macroscopic models: the recursive 
model, the start-arrival model and the start-destination model [1]. 

The recursive model:  The recursive model aims to figure out the traffic flow rate 
through the calculation of the traffic flow rate at each section recursively. The model uniformly 

divides the traffic flow into N  sections and let each section i owns at most one entrance ir  and 

one exit is . Let 1iq  and iq  respectively be the traffic inflow rate and the outflow rate of section 

i . By Equation (1), we can compute iq  according to parameters 1iq  , ir  and is . As the 

model’s name implies, we can calculate the traffic flow rate of any section recursively from the 
flow rate of previous ones. 
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1 ; 1,2, ,i i i iq q r s i N             (1) 
 
The schematic diagram of the recursive model is shown in Figure 2. Section 1 is the 

beginning section of the traffic flow, and 0q  is the initial flow rate. Each section is seen uniformly 

which contains at most one entrance and one exit. The output iq  of section i  is the input of its 

forward section 1i  . 
 

0q 1q 1iq  iq 1Nq  Nq

1r NsNrir is1s  
Figure 2. Schematic Diagram of the Recursive Model 

 
 

The Start-arrive model: The start-arrive model attempts to count the traffic flow rate 
through the arrival flow rate of each section. The schematic diagram of this model is the same 
as the recursive model. The difference is that the start-arrive model define a proportional 

variable ija  as the traffic flow rate of section j which entered from entrance ir . Then we can 

calculate each section’s flow rate according to form (2): 
 

1

; 1, 2,
j

j i ij
i

q ra j


  …, N, 
, , 1 , 1 ,i N i N i i i ia a a a       ( 0 1)     

(2) 

 
To calculate the traffic flow rate at each section, we import the N N  order start-arrive 

matrix of ija : 
 

1,1 1,2 1,
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,

0

0 0

N

N

N N
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a
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



   



A=            (3) 

 

Then we set the traffic flow vector  1 2, , Nq q q q  ，and the entrance traffic flow 

vector  1 2, , , Nr r r r  . 

And we simplify the matrix form as:  
 
q rA              (4) 

 
That is to say the traffic flow rate at each section can be figured out from matrix A and 

the entrance flow vector r . 
The start-destination model: The start-destination model is used on a specific 

condition that the road is closing at the end. This model defines a proportional variable ijb  the 

rate of the exit traffic flow at is  which entered from entrance ir . Then we can calculate each 

section’s exit flow rate in from (5):  
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1

; 1, 2, ,
j

j i ij
i

s r b j N


              (5) 

 
And all vehicles exit at the end of section N , so we have: 
 

1; 1, 2,
N

ij
j i

b j N


              (6) 

 

Then we also import the N N  order start-destination Matrix of ijb  in the form as 

follow：  
 
S rB              (7) 
 

We can also express ija  in Formula (8): 

 

1

; 1, 2,
N

ij ik
k j

a b i N
 

              (8) 

 
Static macroscopic models are constant coefficient models. The usage of these models 

is limited practically because they can not make predictions for accidental events. Nevertheless, 
studying on static macroscopic models is still meaningful due to the unstable measurement in 
dynamic model. In that case, only the mean value of a short period is valuable which usually 
fluctuate strongly. 

 
2.2. Dynamic Macroscopic Models 

Dynamic macroscopic models mainly describe the spatio-temporal association rules of 
the traffic flow features, including traffic flow rate, velocity and density. The theoretical basis of 
dynamic macroscopic models is the fluid dynamics model, which is also known as the 
continuum model of traffic flow. Such models consider traffic flow as a compressible fluid formed 
by a large number of vehicles and do not mention the individual behavior of these vehicles. We 
can divide the dynamic microscopic models into two categories [2]. One category is the first-
order continuum models contain relations between the traffic flow velocity-density or flow rate-
density. The other category is the second-order continuum models contain additional relaxation 
time to adapt the velocity of vehicles with the surrounding ones. The major difference between 
these 2 categories is that whether the model contains inertia term. It make these two categories 
no difference if the time constant of the inertia term is set to zero, which means vehicles can 
instantaneous change their velocity. 

 
2.2.1. The First-order Continuum Model 

The representative model of the first-order continuum model introduced in this paper is 
the LWR model proposed by Lighthill and Whitham. 

LWR model: Lighthill and Whitham established their traffic model with the one-
dimensional kinetic theory of traffic flow in 1955. They choose the principle of mass 
conservation of fluid dynamics in traffic flow and then form their first-order macroscopic traffic 
flow model. They let  as the traffic flow density, q  as the traffic flow rate, t  as time variable, 
x  as the spatial displacement of traffic flow. Thus, ( , )s x t  is the traffic flow generation rate. 

There are three cases: the first is ( , ) 0s x t  , which indicates the conservation of the flow rate; 

the second is ( , ) 0s x t  , which means the inlet traffic flow; the last is ( , ) 0s x t  , which means 

the outlet traffic flow. The continuity equation [3] of the traffic flow is shown in (9):  
 

( , )
q

s x t
t x

 
 

 
            (9) 
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LWR model and many models based on LWR assume a relationship between the traffic 

flow velocity and density under equilibrium state in (10). ev  is the dynamic equilibrium velocity 

of the traffic flow: 
 

( , ) ( ( , ))ev x t v x t             (10) 

 
So the equation can be transformed into: 
 

+(v + ) ( , )
t

e
e

v
s x t

x

 


 


  
          (11) 

 
LWR model can correctly describe the formation of the shock waves and the dispersing 

of traffic congestion, but it can not describe none-quilibrium traffic flow phenomena like the 
ghost traffic. In order to describe these phenomena, second-order continuous models based on 
LWR model was proposed later. 

 
2.2.2. Second-order Continuum Models 

Second-order continuous models include models like the Payne model and 
Papageorgious model which add a relaxation time to LWR model, etc. 

Payne model: To describe the none-quilibrium traffic phenomenon like ghost traffic, 
scholars add vary momentum equation to LWR model and formed fluid dynamic model such as 
Payne model. 

According to the idea of the car-following theory, Payne proposes the corresponding 

dynamic equations [4] in Formula (12). The model defines  as the pressure index;
x

 





 as 

the pressure term which indicates the driver’s reaction process to stimulations;   as the 

relaxation time; 1
( )ev v


  as the relaxation term which indicates the relax process that driver 

adapts to the equilibrium speed.  
 

1
( )e

v v
v v v

t x x

 
 

  
    

  
          (12) 

 
The Payne model is able to simulate the propagation of nonlinear wave in real road. 

And it is the basis model of the extensively used simulation software FREFLO. 
Payne model’s main contribution lies in the relationship formula of the dynamic traffic 

flow velocity-density in Equation (13).   is the relaxation time and x is the flow’s spatial 
displacement during relaxation time  . 

 

( , ) [ ( , )]v x t v x x t                (13) 
 
The model can simulate preliminary the backward-spread of traffic congestion. There 

are problems on the adaptive process and numerical calculation. Yet the main problem is the 
relationship assumption between the traffic flow velocity and density.  

Payne also summarizes the second-order fluid dynamic model’s general form. Most of 
the fluid dynamic models can be written in velocity equation from their continuity equation in 

Formula (14). V
V

x




 is the transport term, P  is the traffic pressure,   is the relaxation time, 

eV  is the dynamic equilibrium traffic velocity determined by local vehicles’ density, 1 P

x





 is 

the pressure term, and 1
( )eV V


  is the relaxation term. 
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
RePr

1 1
( )e

Transport Term laxation Termessure Term

V V P
V V V

t x x 
  

    
   

         (14) 

 
The main difference between these models [5] is the traffic pressure P , relaxation time 

  and the dynamic equilibrium traffic velocity eV .  

The relaxation time in LWR model is set to 0. Payne model and Papageorgious model 

assume  0( ) ( ) / (2 )eP V V    [6], and the average free/expect speed 0 (0)eV V . Phillips 

model assumes P  , and    is the variance of the velocity [7]. Kühne model [8]，Kerner 

and Konhäuser model [9] define 0

V
P

x
  

 


，while 0  is a positive constant,   is the 

coefficient of viscosity. The term
V

x
 



 in Kerner and Konhäuser model means the viscosity 

term similar with the term 

2

2

V

x




 proposed by Whitham before, which is important to filter the 

shock front. Michalopoulos model define the relaxation time  as a variable inversely 
proportional to the traffic flow density [10]. Wu model introduces a momentum equation of the 
one-dimensional pipe flow into traffic flow model in the condition of the hybrid and low-speed 
traffic in China [11]. Bellouquid researches on the hyperbolic asymptotic limit of the discrete 
kinetic theory model of vehicular traffic [12]. Daganzo researches on the analysis of the stability 
of macroscopic traffic flow [13]. Ngoduy thinks widely scattered traffic flow rate-density 
relationship is caused by the random variations in driving behavior. And he solves this problem 
by adopting a multi-class first-order model with a stochastic setting in his model parameters 
[14]. 

The most prominent feature of microscopic models is that these models do not take 
vehicle’s individual behavior into account. We summarize the features of these models in Table 
1. 

 
 

Table 1. Features of Macroscopic Models 
Model Features 
Static 

macroscopic 
models 

Being a constant model, static model is limited used in real cases. 

Dynamic 
macroscopic 

models 

 Being different from common fluid, the 
velocity inversely proportional to the density 
in traffic flow is an inexplicable phenomenon 
in the dynamic conservation equation. 
 Dynamic models are only suitable for 
the crowded, equilibrium and stable traffic 
flow. 

First-order 
continuum 

model 

 The model assumes the 
relationship between velocity-
density in equilibrium state. 
 It can simulate the form of 
traffic shock and the dissipation of 
congestion. But it can’t simulate the 
traffic flow in non-equilibrium state. 
 There contains no relaxation 
time. 

Second-order 
continuum 

models 

 These models assume a 
dynamic relationship between traffic 
velocity-density. 
 It can simulate phenomena 
like the stop-and-go and the 
propagation of nonlinear waves.  
 There contain relaxation time. 

 
 

2.3. Mesoscopic Models 
Mesoscopic models include gas-kinetic models and hybrid models. These models 

usually combine different models among macroscopic and microscopic models. Mesoscopic 
models describe single vehicle’s dynamic response to the variation of the traffic flow density 
(flow rate or velocity). These models treat traffic flow as ‘platoons’ formed by a set of nearby 
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vehicles to describe the behavior of the inflow and outflow of each platoon. The description of 
the movement of the vehicles in these models is similar with them in macroscopic models, 
which means vehicles in the same platoon have a same speed. The classification of 
mesoscopic models is shown in Figure 3. 

 
 

 
 

Figure 3. Classification Figure of Mesoscopic Models 
 
 

2.4. Gas Kinetic Models 
Prigogine model: Prigogine-Herman model proposed the first mesoscopic model of 

traffic flow[15] in 1971. Such model deduces that the LWR model is a limitation case according to 
its kinetic theory. The model uses a partial differential equation to express the spatio-temporal 
evolution of the velocity and density of vehicles. Then they import an approximation relation to 
close the Bolzmann equation in order to obtain the model equation. In a historical view, the gas 
kinetic model contributes on the basis of theoretical derivation of the macroscopic equation.  

The conservation equation contains the relaxation term 
rel

f

t

 
  

 and the interaction 

term
int

f

t

 
  

: 

 

intrel

f dx dv f f
f f

t x dt v dt t t

                                
        (15) 

 
If the quantity of vehicles remains the same, which means there has no other entrances 

and exits. The conservation equation is: 
 

( ) ( )
f dx dv

f f
t x dt v dt

  
  

  
          (16) 

 
That means the location x and the velocity v determine vehicle’s state in this model. 
Fontana model: Fontana [16] extended the Prigogine model in 1975. He assumes that 

all vehicles have their individual expected velocity. The location x , velocity v  and expected 

velocity 0v  determine the state of the vehicle. The governing equation is as follow: 
 

0

0

( )
( ) ( ) ( )tr

dvf fv dv f
f f

t x v dt v dt t

    
   

             (17) 

 
Helbing model: The gas kinetic based models had no further improvement due to the 

mathematical difficulty of it’s gas kinetic frame until Helbing proposed his model [17] in 1995. 
Helbing bings in the interaction between the acceleration of vehicle N  and 1N   to form the 
kinetic-based continuum model, a so-called Helbing model. He defines P as the traffic pressure, 

( )ev   as the dynamic equilibrium velocity in his model: 



TELKOMNIKA  ISSN: 2302-4046  

Review of the Urban Traffic Modeling (Zhu Song) 

7745

  1 1
( )e

v v P
v v v

t x x


 
  

    
  

          (18) 

 
The well-known traffic software MASTER adopts Helbing model for the advantages of 

its fast computation and strong robustness, etc. This model is able to simulate stop-and-go 
wave and nonlinear dynamic phenomenon such as congestion of synchronization, etc.  

Hoogendoorn and Bovy proposed a generalized gas kinetic traffic flow model [18] in 
1999, which became an unitive framework of mesoscopic models. 
 
2.5. Hybrid Models 

Hybrid models are usually the combination models mixed with macroscopic, 
mesoscopic and microscopic models. For example, Burghout presents a hybrid mesoscopic-
microscopic model that applies microscopic simulation to areas of specific interest while 
simulation a large surrounding network in less detail with a mesoscopic model [19]. McCrea 
presents a hybrid approach combined the complementary features and capabilities of both 
continuum mathematical models and knowledge-based models to describe effectively traffic 
flow in road networks [20]. Depalma mixes microscopic method with macroscopic method [21]. 
In his model, movements of vehicles are modeled in macroscopic way with the policy of vehicles 
modeled in microscopic way. Depalma model and Schwerdtfeger model [22] are adopted by 
software METROPOLIS and DYNEMO. 
 
2.6. Microscopic Models 

We usually call microscopic models the entity-based models. These models focus on 
the individual vehicles’ modeling to describe their movements and interactions. These models 
attempt to describe the overall characteristics of the system by integrating the characteristic of 
each individual vehicle. That is, each vehicle gathers information of surrounding ones and then 
generates its own driving strategy to forms the actual traffic flow. Vehicle’s individual behaviors 
such like car-following, lane-changing and overtaking can actual reflected in these model. Being 
different from macroscopic models, microscopic models do not consider about the specific 
situation of the features of traffic flow, such as traffic flow rate, density and velocity.  

Macroscopic models contain car-following models, sub-microscopic models and particle 
hopping models (also known as cellular automaton models). Microscopic models’ classification 
is shown in Figure 4. 

 
 

 
 

Figure 4. Classification Figure of Microscopic Models 
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2.7. Car-following Models 
Car-following modes aim to study the propagating of the traffic flow on a single lane. 

Pipes proposed the earliest car-following model and its theory in 1953 [23]. It uses mathematical 
model to analyze its dynamic theory in order to simulate vehicle’s following behavior on a single 
lane. Such models research on the states of traffic flow mainly in the synchronized flow of traffic, 
which are defined in three-phase traffic theory. The synchronized flow has characteristics 
including conditionality, retardance and transitivity, which makes the state of traffic propagating 
backward intermittently and continuously like pulse do. These models are “stimulus-response” 
models that research on vehicle’s following behaviors in synchronized flow by analyzing driver’s 
responses to different stimulations. The form is: car-following response = sensitivity × stimulus. 

Car-following models contain linear car-following models, nonlinear car-following 
models and car-following models based on fuzzy inference system. 

2.7.1. Linear car-following Models 
Pipes model, the earliest proposed car-following model, is a representative linear car-

following model introduced in our paper. 

Pipes model：The model defines ( )s t  as the distance between vehicle N and 1N   
that two vehicles won’t crash when vehicle n breaks; T as the reaction time, during which the 
velocity of vehicle N+1 dos not change. The schematic diagram of Pipes model is shown in 
Figure 5: 

 
 

 
 

Figure 5. Schematic Diagram of Pipes Model 
 
 

The model assumes the breaking distance of vehicle n 3d equals to the breaking 

distance of vehicle n+1 2d . The gap between two vehicles is:  

 

1 1( ) ( ) ( ) ( )n n ns t x t x t Tx t T L     
 

 

The type t differential, we can get 1( )nx t T  and 1( ) ( )n nx t x t  , separately the 

acceleration (reaction) of vehicle 1n   at time t T  and the velocity difference between 

vehicle n  and 1n   at time t : 
 

 1 1

1
( ) ( ) ( )n n nx t T x t x t

T                 (19) 

 
We notice that the reaction of vehicle 1n   is proportional to the velocity difference 

between n  and 1n   at time t . Thus we name the model linear car-following model.  
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The equation 2 3d d  in the model is assumed, which does not exist in physical truth. 

Hence, researchers adopt the reaction coefficient   to replace the sensitivity 
1

T  and then form 

the general type of linear car-following models:  
 

 1 1( ) ( ) ( )n n nx t T x t x t                (20) 

 
That is: car-following reaction = sensitivity(or reaction coefficient) ×stimulus. 
There are various reaction coefficients   assumed in different models.  Some models 

assume   as a constant (e. g., a  ). Some models assume   in distribution function such 
as:  

 

1 2

1 2

,

,

a d d c

b d d c


  
    

           (21) 

 

a , b , c  is constant. 

2.7.2. Non-linear Car-following Models 
Nonlinear car-following models contain models improved based on linear car-following 

models such as Gazis model, OV model, etc. 
Gazis model: The assumption that the acceleration (reaction) of vehicle 1n   in Pipes 

model relates only with two vehicles’ relative velocity which is not agreed with Gazis. Thus, he 
proposed a nonlinear car-following model in which the reaction coefficient   was inversely 
proportional to the gap between two vehicles in 1959 [24]. Gazis defines that a  as the 

proportionality coefficient which is proportional to the critical velocity of traffic flow mV and 

inversely proportional to the gap of two vehicles 
fV : 1

2m fa V V  .Gazis model is shown as 

follow: 
 

 1 1
1

( ) ( ) ( )
( ) ( )n n n

n n

a
x t T x t x t

x t x t 


  


            (22) 

 
Gazis proposes the general form of car-following models in his subsequent research 

[25]. He defines  
1

1

( )

( ) ( )

m
n

l

n n

x t T

x t x t






  as the sensitivity, m , l  are constants. 

 

 
 1

1 1

1
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( ) ( ) ( )

( ) ( )

m
n

n n nl

n n

x t T
x t T a x t x t

x t x t


 




  


           (24) 

 
It is the nonlinear model formula when 0m   and 1l  ; Yet it is the general form of 

linear model when 0m   and 0l  . 
Gipps model (Safety-distance model): Gipps model assumes a safety distance that 

vehicles always keep in their following behavior to avoid crashing. Thus the model is known as 
the car-following model based on safety distance[26].The original form of the model is expressed 
in differential equations of basic Newtonian motion but not in the form of stimulus-response: 

 
2 2

1 1 1 0( ) ( ) ( ) ( ) ( )n n n l n nx t x t x t x t T x t T b                    (25) 
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Gipps imports some factors that other model omitted before, including driver’s extra 
safety reaction time T/2, the maximum possible breaking probability of vehicles, etc. The model 
can simulates the propagating interference of vehicles. However, the assumption that drivers 
must keep a safety distance is not a rule that drivers must abide by in real cases. 

OV model (optimization speed model): The optimization speed model was presented 
by Bando in 1995. The model assumes that drivers should adjust their velocity dynamically 

according to the gap between him and his forward vehicle [27]. The model defines ( )nV x  as 

the optimization speed determined by the gap between two vehicles nx ;   as the sensitivity 
coefficient. The model is shown as follow: 

 

 ( ) ( ) ( )n n nx t V x x t               (26) 
 
The outcome appears that the resultant acceleration and deceleration does not conform 

to actual situation according to the simulating with field data executed by Helbing.  
Generalized force model：To solve the problem of the unrealistic acceleration 

appeared in the OV model, Helbing presentes the generalized force model [28]. The model 
imports the effect of the velocity-difference between two vehicles while the forward one is slower 
than the following one. He defines H  as the heaviside-funtion，  and   as different 
sensitivity coefficients. The model is shown as follow: 

 

   2

1( ) ( ) ( ) ( ) ( )n n n n nx t V x x t H x t x t                  (27) 
 
Besides, there are other non-linear car-following models: Jiang proposes his full-

velocity-difference model (FVD) which considers the effect of the velocity-difference of two 
vehicles in any situation [29]. Peng improves FVD model by adding multi-vehicles’ relationship 
and forms multi-car-following model [30]. Shamoto presents a new car-following model based 
on relative velocity and velocity of forward vehicle. The acceleration is assumed infinitely in 
order to simulate metastable critical density of homogeneous flow [31]. Tang develops a new 
car-following model with the consideration of the driver’s forecast effect and the analytical and 
numerical results shows that the stability of traffic flow is enhanced with the increase of the 
forecast effect coefficient and the forecast time [32]. Farah researches on the driving method 
combination with special instrument in order to reduce error in subjective judgment. And it is 
proved that co-operative system has appositive impact on drivers’ car-following behavior [33]. 
Feng proposes a non-linear traffic flow time sequence prediction model aiming at the periodic 
and stochastic characteristics of the traffic flow [71]. 

 
2.7.3. Car-following Models Based on Fuzzy Inference 

Car-following model based on fuzzy inference can accurate represents people’s driving 
behavior in his next logical step. The model divides inputs into several fuzzy subsets which 
describe how adequately a variable closes to a condition. For example, a subset describes and 
quantifies a condition ‘too close’. They assume the distance for example below 0.5m as ‘too 
close’ with a membership of 1. Otherwise, the distance above 0.5m is given a membership of 0. 
Once defined, they can obtain the fuzzy output subsets according to the logical operation on 
input subsets (e.g., IF ‘close’ AND ‘closing’ Then ‘brake’). All possible outcomes can be figured 
out by evaluating the output sets with actual cases. 

Kikuchi and Chakroborty presented an original form of the car-following model based on 
fuzzy inference in 1992 [34]. The model fuzzifies inputs like gap, velocity difference and forward 
vehicle’s acceleration into several subsets. They figure out memberships to estimate the 
belonging subsets of inputs according to experience and probability statistics. They firstly fuzzify 
the memberships of the input subsets, and then fuzzy infer them in fuzzy control rules to obtain 
the fuzzy output (acceleration of following vehicle). The fuzzy rules is shown as follow: 

 

 1

' '

/n n

If x adequate

a v a xT 

 

  
           (28) 
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Chakroborty and Kikuchi improved their model’s efficiency and veracity by using look-up 
table [35]: 

 

1& &i i n i

n i

If x A v B a C

a D
    


          (29) 

 
Chakroborty and Kikuchi completed their fuzzy model by calibrating the membership 

function of the fuzzy inference system with field data in their later work [36]. 
In recent years, researches on fuzzy model contains as below: Qipeng Xiong employs 

least squares to fit discrete data to obtain membership functions [37]. Khodayari and Alireza 
presents a car-following model developed in adaptive neuro fuzzy inference system to simulate 
and predict the future behavior of a driver-vehicle-unit. The model can be recruited in drier 
assistant device and other ITS applications [38]. Then they propose a model developed based 
on a new idea for estimation the instantaneous reaction of a driver-vehicle-unit, which is used as 
an input of fuzzy model. And the result shows that fuzzy model based on instantaneous reaction 
delay outperformed the other car-following models [39]. 

Car-following models are the earliest models widely used and researched. Researches 
on car-following models are trend to combination models with sub-microscopic models. Some 
features of car-following models are listed in Table 2: 

 
 

Table 2. Features of Car-following Models 
models Features 

Linear car-following 
models 

 The velocity difference of two vehicles determines the reaction of the following one. 
 Such models are suitable for the one-lane and non-free traffic flow in high density. 
 These models are the deterministic models. 
 The sampling of parameters influenced by many factor is difficult to obtain, which makes 

the models non-universality. 

Nonlinear car-
following models 

 The reaction of the following vehicle is not only determined by velocity difference of two 
vehicles, but also determined by parameters such like the gap and safety distance 
between vehicles. 

 Other features of these models are similar with the linear car-following models. 

Car-following models 
based on fuzzy 

inference 

 These models obtain fuzzy outputs (reaction) from estimating the membership functions. 
 Such models are combined with sub-microscopic models closely. 
 The measurement of the membership functions is difficult. 
 Multi-lane is supported in latest fuzzy-logical models.  
 These models are stochastic models which make the simulation of the traffic 

phenomena much better. 

 
2.8. Sub-microscopic Models 

Sub-microscopic models are more detailed than microscopic models. These models 
contain 2 categories: One category focuses on the human psychology such as the driver’s 
behavior indicator and the threshold of driver’s reaction to traffic lights and surrounding, etc. The 
other category concentrates on the performance of vehicles, such as the shifting of vehicles, 
trajectories, performance of different vehicles and vehicle’s parameters like acceleration/braking 
curve, etc. 

Michaels defines that the following vehicle’s behavior thresholds are determined by the 
visual estimated relative velocity in his sub-microscopic model [40]. Then a model based on 
distance threshold appears [41]. After that, a series of experiments based on physiological 
perception lead out the physiological-perception-based models [42, 43] (e.g., the driver’s 
perception based model [44]). 

The Curves of thresholds in the model divide the car-following process into 4 states 
according to different relationships between the relative velocity and distance of vehicles. The 
section graph is shown in Figure 6. 
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Figure 6. Section Graph of Driver’s Mental Model 

 
 

The problem of sub-microscopic models is that the final conclusion has yet been 
reached on the effectiveness of this matter. Although these models can simulate driver’s 
behavior and describe most of the driver’s characteristics, the measurement and calibration of 
the threshold is the key problem need to be solved. 

 
2.9. Cellular Automaton Models（particle hopping models） 

The cellular automaton (CA) is a formation of cells, grids, neighborhoods and update 
rules. It is a discrete, separate and space-diffusible system formed by a large number of simple, 
consistent and correlation partial entities. The ideal cellular automaton models are not only 
discretely in time and space, but also limited discretely in their belonging states. Cells that 
formed the CA models are localized interaction in space and causality in time. Being different 
from normal dynamic models, CA models are grid dynamic models contain a series model 
construction rules without definite equation forms. 

Being equal to the logical model Turing machine in theory, CA models are especially 
good at parallel processing, and in principle they are able to computing any tasks [45]. 

 
2.9.1. One-dimensional Cellular Automaton Models 

One-dimensional cellular automaton models mainly study on the interaction of vehicles 
on one-dimension roads. The major one-dimensional cellular automaton models include: CA-
184 the simplest form CA model, the NS model, the F-I model and other models improved 
based on the NS model such as the slow-start model, the cruise control model and multi-lane 
models, etc. 

CA-184 model (The deterministic CA model): The deterministic CA model is the 
basic form of CA models. The model’s rule is as follow: 

Let nd be the gap between vehicle n  and 1n   at time t , nv be the velocity of vehicle 

n  at time t , maxv be the max velocity of all vehicles. 

1. Acceleration: maxmin( 1, ),n n n nv v v v d   ； 

2. Deceleration: ,n n n nv d v d  ； 

3. Propagation: n n nx x v  ；   
The model is equivalent to the CA-184 model named by Wolfram [46] while max 1v  . 

The schematic diagram of CA-184 model is shown in Figure 7, t  is the time step; the number 
above each vehicle in the picture is the current velocity of this vehicle: 
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Figure 7. Schematic Diagram of  CA-184 Model 

 
 

Model’s rule is as follow: 

1. 1, 1 1n n nv d and v   ，that means vehicles maintain their highest speed 1. 

2. 1 2 0n n nv d and v  ， ，that means vehicles only start if and only if the distance 
from the vehicle ahead is equal to or greater than 2. 

It is not only the basis of many CA-based models, but also the basis of two dimensional 
cellular automaton models. 

N-S model：The NS model is an important single-lane cellular automaton model which 
adds random deceleration rules to the deterministic CA model [47]. NS model defines rulls as 
follow:  

Let nx and nv  respectively be the location and velocity of vehicle n . The model defines 

nv  as an integer from max0 v and nd  as the gap between vehicle n  and its forward vehicle 

1n  . The model stores the complete configuration at time t , and compute the configuration at 

time 1t   in parallel. The Schematic diagram of N-S model is shown in Figure 8: 

 
 

Figure 8. Schematic Diagram of  N-S Model - The length of a grid is 7.5 m and figure on top 
right corner refer to velocity on that state 

 
 

The rules of this model are as follow: 

1. Acceleration: maxmin( 1, ),n n n nv v v v d   ； 

2. Deceleration: ,n n n nv d v d  ； 

3. Randomization: max( 1, 0) 0 1 0n n nv v P v    ， 且 ， P  is the deceleration 
probability;  

4. Propagation:： n n nx x v  ；  
The model chooses a randomization rule to simulate phenomena such as: speed 

fluctuation on free flow; overreaction to braking and the delay of acceleration.  
Cruise control limit NS model (N-S-CC): Such model [48] assumes that vehicles 

reach their maximum speed without affecting by any other vehicles should maintain their highest 
speed. That means there’s no speed fluctuation in that condition, the randomization tends to 0. 
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The model define that p and maxvp are both the deceleration probabilities. The deceleration and 
randomization rule are as follows:  

 

  max

max

max

max

,
max 1,0 , , 0, 0 1

,

v

n n v

p If v v
v v p p p

p If v v

     


     (30) 

 
Slow-start model: The slow-start model is a NS-based model extended only on the rules 

of vehicle’s start. In example, a start probability   is set in the condition that vehicles only start 

when there are at least 2 blank grids ahead. That means vehicles have a probability 1   to 
start when there is only one space ahead. Slow-start model is designed to simulate traffic 
phenomena caused by different start policies of different drivers.  

TT slow-start N-S model: The TT slow-start N-S model attempts to simulate the traffic 
phenomena that some drivers are unwilling to start when there’s no ‘enough’ space ahead [49]. 

dp  is the start probability, and the slow-start rule is as follow: 
 

max

1 , 1
min( 1, ), , 0, 0 1

, 1
d n

n n n d
d n

p If d
v v v P v p

p If d

 
      

      (30) 

 
BJH slow-start model: This model defines that only vehicles affected to stop should 

abide by the slow-start rule [50]. In example, when vehicle n is forced to stop by vehicle 1n  , 

its start probability is P  at time-step t  with his probability is 1 at time-step 1t  . 
VDR slow-start model: The VDR model assumes that there is a relationship between 

the vehicle’s velocity and a random deceleration parameter [51]: 
 

( )np p v
 

 
That is to represent the static delay of vehicle’s start by function of random deceleration 

parameter and velocity. 
F-I model: This model allows vehicles to accelerate to the maximum speed 

instantaneously [52].  
The acceleration/deceleration rule is as follow: 
 

maxmin( 1, )n nv d v 
 

 
The feature of F-I model makes it not able to simulate stop-and-go phenomenon. 

However, the significance of the model is the theoretical research value of its exact solution.  
Velocity-effect model (VE): The velocity-effect model is to solve problems that the 

resultant simulation data is different from resultant field data caused by the velocity-effect of 
vehicle ahead [53]. The acceleration/deceleration rule of The N-S model is modified to simulate 
that effect: 

Acceleration/Deceleration: max 1min( , 1, ' )n n n nv v v d v   , 

And max' min( 1, , max[0, 1])n n nv v v d  
 

 
Other rules of the model are similar with them in the N-S model. 
Multi-lane N-S model: The lane changing rules in multi-lane model is mainly based on 

the N-S model. The model considers a symmetry case and a asymmetry case according to the 
difference between lanes (fast/slow lanes) and vehicles (small/large vehicles) [54].  

The model firstly executes the lane changing, and then simulates vehicle’s propagate 

under one-lane rules. Chowdhury presents his lane changing rules as follows [55]. ( )gap n  is 

the distance between vehicle n  and its forward one on the same lane: ( )ogap n  is the distance 



TELKOMNIKA  ISSN: 2302-4046  

Review of the Urban Traffic Modeling (Zhu Song) 

7753

between vehicle n  and its forward one on the other lane; , ( )o backgap n  is the distance between 

vehicle n  and its following one on the other lane; l is a distance constant; ()rand  is a random 

number between (0,1) ， cp
 
is the lane changing probability: 

 

, ,

( ) ,

( ) ,

( ) ,

()

o o

o back o back

c

gap n l

gap n l

gap n l

rand p








            (32) 

 
Asymmetric multi-lane model generates different Lane changing rules according to the 

difference between lanes and vehicles themselves. The schematic diagram of the multi-lane 
model is shown in Figure 9: 

 

 
 

Figure 9. Schematic Diagram of Multi-lane Model 
 
 

Correlational researches on one-dimensional CA models in recent years are as follow: 
Kerner uses simple cellular automaton model and three-phase traffic model to analyze the 
movement and contraction effect of synchronized flow [56]. Bin Jia presented a  model that 
randomization effect is enhanced in with the decrease of time gap and the long time stopped 
vehicle has large randomization probability [57]. Jin adjusts the anticipated velocity and the 
acceleration threshold through parameters, and conclude that the acceleration threshold is the 
major factor affection the F to S phase transition [58]. Chu presents an improved cellular 
automaton model for symmetric two-lane traffic, which incorporates anticipation effects, 
sensitive driving technique and information interaction synthetically [59]. 

 
2.9.2. Two-dimensional Cellular Automaton Models 

The appearance of two-dimensional cellular automaton models has authentic practical 
significance because they can exactly describe the realistic road traffic. Two-dimensional 
cellular automaton models mainly includes their fundamental form the BML model and the 
ChSch model which models road in cells. 

BML model: The BML model [60] defines a square grids in N N  size with each grid 
being able to contain one vehicle in east-west or south-north direction. The model random 
distributes vehicles and customize the number of vehicles. The model defines rules as below: 
vehicles in east-west direction move 1 step in odd time. Vehicles in south-north direction move 1 
step in even time. Vehicles do not move when there is a vehicle in grid ahead. That means the 
model considers every grid a junction with traffic light which phase changes in a time step. The 
traffic densities are the number of vehicles divides the number of grids respectively in that 
direction. There are 2 density-related phase transition points according to the three-phase traffic 
theory. One is the transition from the free phase to the synchronize phase, the other is the 
transition from the synchronize phase to the wild moving jam phase. 

The BML model is wildly researched in two directions. One is to improve the BML model 
by extending in actual traffic factors in order to make it closer to the actual situation (e.g., ChSch 
model). The other focuses on the causes and the regularity of the phase transformation based 
on three-phase traffic theory. 
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ChSch model: The ChSch model has more practical significance than the BML model 
because it abstracts the road in grids. Such model divides road in grids and model the road 
similar with the NS model does [61]. The model defines each road intersection is a junction with 
traffic lights changed in period T. Vehicle’s velocity related only with the status of forward grids 
and traffic lights. The schematic diagram of the ChSch model is shown in Figure 10: 

 
 

 
 

Figure 10. Schematic Diagram of ChSch Model 
 
 

The model defines that nd  is the gap between vehicle n  and 1n  ， ns  is the distance 

between vehicle n  and the intersection ahead, signalT is the state of signal,   
is the time that till 

lights turned to red. The deceleration process indicates that vehicle’s velocity is depended on 
the time whether he could pass the intersection during green light. The rules of ChSch model 
are as follow: 

1. Acceleration： maxmin( 1, )n nv v v  ；  
2. Deceleration：  
 

min( , 1, ), Re

min( , 1), ,

min( , 1), , , min( , 1)

min( , 1), , , min( , 1)
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n
n n n n signal n n n

n n n n signal n n n

v d s T d

v d d s T Green
v

v d d s T Green v d s

v s d s T Green v d s





 
          
      

and

and

； 

 

3. Randomization: max( 1, 0) 0 1 0n n nv v P v    ， and ； 

4. Propagation: 
n n n

n n n

x x v

y y v

 
  

； 

Scholars conduct a lot of researches on the basis of the BML and ChSch model in 
recent years: Sun studies on the behavior that traffic flow varying with traffic lights by stages 
under free flow and wild moving jam [62]. Ding studies on the driving behavior that ignores 
traffic lights in BML model. The result shows that the violator increases the average velocity of 
free flowing phase while decreases the critical car density [63]. Ding also studies on phase 
transformation under boundary condition in a stochastic version of the BML model with random 
update rule [64] as well as the effect to traffic flow caused by configuration and quantity of 
bridges in BML model [65]. Zhao studies on the reason and solution of increasing phase 
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transformation from free flow to wild moving jam [66]. Fukui researches on the changing phases 
caused by intermittent block of the road [67]. Ding develops a mean-field theory which 
successfully predicts the average velocity in moving phase. And the dependence of the average 
velocity, the density and the flow rate on the injection probability in the moving phase have also 
been obtained through the mean-field theory [68]. Sui studies on the effect that slow-start 
probability and parameter of traffic lights influence to the phase of traffic [69]. Yang builds a 
mixed traffic flow model considering the transit based on BML model [70]. 

 
 

3. Conclusion 
We can clearly see the applicability, advantages and disadvantages of macroscopic, 

microscopic and mesoscopic models by classifying them and analyzing their features. 
Macroscopic models focus on the relationship among the flow rate, velocity and density of the 
whole traffic. It is much more suitable for steady and homogeneous traffic flow compared with 
free or intermittent ones. Macroscopic models are better in computational efficiency because 
they have nothing to do with the quantity of vehicles. So they are appropriated for large-scale 
modeling in computer applications. The Gas-kinetic model, an important mesoscopic models, 
has fulfilled the theoretical gap between macroscopic fluid-dynamic theory and microscopic car-
following theory with its gas kinetic theory. Its modeling method has already been adopted in 
much simulation software. A difficulty to overcome is the error of the measurement and the 
complexity of calculation on the undetermined parameters and the relationship equations in 
Gas-kinetic theory. Microscopic models are wildly studied due to the characteristics of the 
random model can essentially simulate the complex, dynamic, strong randomness traffic 
system. Cellular automaton models are still a research hotspot for their features. They discretize 
time-space and state, and replicate macro phenomena through simple rules. Two-dimensional 
cellular automaton models are more suitable for road traffic modeling that makes it in a great 
research value. The phase transition of three-phase traffic theory and sub-microscopic models 
based on driver’s psychological reaction are also wildly researched. Adopting microscopic 
models is more accurate than choosing macroscopic and mesoscopic models in computer 
simulation. But the problem of adopting microscopic models is the bottom-up structure and the 
strict time-synchronization requirements, which makes the large-scale simulation hard to 
achieve. 
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