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Abstract 
In this paper, AC modeling and small signal transfer function for DC-DC converters are 

represented. The fundamentals governing the formulas are also reviewed. In DC-DC converters, the 
output voltage must be kept constant, regardless of changes in the input voltage or in the effective load 
resistance. Transfer function is the necessary knowledge to design a proper feedback control such as PID 
control to regulate the output voltage as linear PID and PI controllers are usually designed for DC-DC 
converters using standard frequency response techniques based on the small signal model of the 
converter. 
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1. Introduction 
DC-DC power converters are employed in a variety of applications, including power 

supplies for personal computers, office equipment, spacecraft power systems, laptop 
computers, and telecommunications equipment, as well as dc motor drives. In a DC-DC 
converter, the dc input voltage is converted to a dc output voltage having a magnitude differ 
from the input, possibly with opposite polarity or with isolation of the input and output ground 
references. Figure 1 shows a DC-DC converter as a black box. It converts a dc input voltage, vg 
(t) , to a dc output voltage, v (t) , with a magnitude other than the input voltage. In a typical DC–
DC converter application, the output voltage v(t) must be kept constant, regardless of changes 
in the input voltage vg (t) or in the effective load resistance R. This is accomplished by building a 
circuit that varies the converter control input  [i.e., the duty cycle d(t)] in such a way that the 
output voltage v(t) is regulated to be equal to a desired reference value.To design the control 
system of a converter, it is necessary to model the converter dynamic behavior. In particular, it 
is of interest to determine how variations in the power input voltage vg(t), the load current, and 
the duty cycle d(t) affect the output voltage. Unfortunately, understanding of converter dynamic 
behavior is hampered by the nonlinear time-varying nature of the switching and pulse-width 
modulation process. 

 

 
Figure 1. A DC-DC converter behavior 

 
 

In particular, it is of interest to determine how variations in the power input voltage vg(t), 
the load current, and the duty cycle d(t) affect the output voltage. Unfortunately, understanding 
of converter dynamic behavior is hampered by the nonlinear time-varying nature of the 
switching and pulse-width modulation process. 
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These difficulties can be overcome through the use of waveform averaging and small 
signal modeling techniques.As illustrated in Figure 2, a controller block is an integral part of any 
power processing system. It is nearly always desired to produce a well-regulated output.  

 
 

 
 

Figure 2. Required controller to DC-DC conveter 
 
 

Since switching converters are nonlinear systems, it is desirable to construct small-
signal linearized models. This is accomplished by perturbing and linearizing the averaged model 
about a quiescent operating point. Ac equivalent circuits can be constructed, in the same 
manner used in to construct dc equivalent circuits. The dc component of a converter waveform 
is given by its average value, or the integral over one switching period, divided by the switching 
period. Solution of a dc-dc converter to find its dc, or steady-state,voltages and currents 
therefore involves averaging the waveforms. 

A typical DC–DC buck converter and feedback loop block diagram is illustrated in 
Figure 2 [11, 8, 2]. It is desired to design this feedback system in such a way that the output 
voltage is accurately regulated, and is insensitive to disturbances in vg(t) or in the load current. 
Additionally, the power stage and a feedback network feedback system should be stable, and 
characteristics such as transient overshoot,  settling time, and steady-state regulation should 
meet specifications.  
We are interested to design converters and their control systems such as Figure 3. To design 
the system of Figure 3, a dynamic model of the switching converter is required. What is the  
effect of variations in the power input voltage, the load current, or the duty cycle the output 
voltage? What are the small-signal transfer functions? To answer these questions, we will 
extend the steady-state models to include the dynamics introduced by the inductors and 
capacitors of the converter. 
 
 

 
 

Figure 3. A simple dc-dc regulator system,including a buck converter 
  
 

Modeling is the representation of physical phenomena by mathematical means. I n 
engineering, it is desired to model the important dominant behavior of a system, while 
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neglecting other inconsequential phenomena. Simplified terminal equations of the component 
elements are used, and many aspects of the system response are neglected altogether, that is, 
they are “unmodeled.”   

The switching ripple is small in a well-designed converter operating in continuous 
conduction mode (CCM). Hence, we ignore the switching ripple, and model only the underlying 
ac variations in the converter waveforms. Suppose that some ac variation is introduced into the 
converter duty cycle d (t), such that: 

 
d(t)= D + Dmcos ωmt 
 

Where D and D m  are constants, | Dm << D | and the modulation frequency ωm is much 
smaller than the converter switching frequency ωx =2πfx. The resulting transistor gate drive 
signal is shown in Figure 4(a), and a typical converter output voltage waveform v (t) is showen 
in Figure 4(b). The spectrum of v(t) is illustrated in Figure 4. This spectrum contains 
components at the switching frequency as well as its harmonics and sidebands; these 
components are small in magnitude if the switching ripple is small. In addition, the spectrum 
contains a low-frequency component at the modulation frequency ωm. 

 
 

 
Figure 4. AC variation of the converter signals (a) transistor gate drive signal,and (b) the 

resulting converter output voltage waveform 
 
 

The magnitude and phase of this component depend on the duty cycle variation, as well 
as the frequency response of the converter. If we neglect the switching ripple, then this low-
frequency component remains [as illustrated in Figure 4(b)]. The objective of our ac modeling 
efforts is to predict this low-frequency component. 

 

 
Figure 5. Spectrum of the output voltage waveform v(t) of Figure 4 

 
 

  The switching ripples in the inductor current and capacitor voltage waveforms are 
removed by averaging over one switching period. Hence, the low-frequency components of the 
inductor and capacitor waveforms are modeled by equations of the form: 

 

 
〈 〉

〈 〉          (1) 
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〈 〉

〈 〉  

 
Where ‹x (t)› Ts denotes the average of x(t) over an interval of  length Ts [11]: 
 

 〈 〉 	       (2) 

 
So we will apply the basic approximation of removing the high-frequency switching 

ripple by averaging over one switching period. 
In the next parts we will derive ac modeling of basic DC-DC converters and then by the 

approximation method mentioned above we will derive small signal transfer function of such 
converters. 

 
 

2. AC Equivalent Circuit Modeling 
2.1. The Basic AC Modeling Approach 

Let us derive a small-signal ac model of the buck-boost converter of Figure 6 [9, 2] 
.  

 
Figure 6. Buck-boost converter example 

 
 

The analysis begins, by determining the voltage and current waveforms of the inductor 
and capacitor. When the switch is in position 1, the circuit of Figure 7(a) is obtained.  

 
 

 
 

 

Figure 7. Buck-Boost Converter circuit: (a) switch is in position 1, (b) switch is in position 2 
 

 
The inductor voltage and capacitor current are: 
 

 

				               (3) 

 
We now make the small-ripple approximation by replacing waveforms with their low-

frequency averaged values 
 

〈 〉         (4) 

 
〈 〉

 

 



TELKOMNIKA  ISSN: 2302-4046  

A Review to AC Modeling and Transfer Function of DC-DC Converters (Azadeh Ahmadi) 

275

With the switch in position 2, the circuit of Figure 5(b) is obtained. Its inductor voltage 
and capacitor current are: 
 

  

         (5) 

 
Use of the small-ripple approximation, to replace i(t) and v(t) with their averaged values, yields: 
 

 〈 〉  

 〈 〉
〈 〉

       (6) 

 
Averaging the inductor voltage used Equation (2): 

 
〈 〉 〈 〉 ′ 〈 〉     (7) 

 
By insertion  this equation into Equation (1) leads to: 

 

 
〈 〉

〈 〉 ′ 〈 〉        (8) 

 
This equation describes how the low-frequency components of the inductor current vary 

with time. A similar procedure leads to the capacitor dynamic equation. Average capacitor 
current: 

 

 〈 〉
〈 〉 ′ 〈 〉

〈 〉
     (9) 

 
Upon inserting this equation into Equation (1) and collecting terms, we will obtain: 
 

 
〈 〉 ′〈 〉

〈 〉
        (10) 

 
This is the basic averaged equation which describes dc and low-frequency ac variations 

in the capacitor voltage.  
To derive a complete ac equivalent circuit model, it is necessary to write an equation for 

the average converter input current. Buck-boost input current waveform is:  
 

 
〈 〉 			 	 	
													 	 	

 

 
Upon averaging over one switching period, we will obtain: 
 

 〈 〉 〈 〉  
 

This is the basic averaged equation which describes dc and low-frequency ac variations 
in the converter input current. These equations are nonlinear because they involve the 
multiplication of time-varying quantities.  

If the converter is driven with some steady-state, or quiescent, inputs: 
 
  
 〈 〉  

 
Then, after transients have subsided the inductor current, capacitor voltage, and input 

current: 
 
 〈 〉 , 〈 〉 , 〈 〉  
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Reach the quiescent values I, V, and Ig, given by the steady-state analysis as [8, 2]: 
 

 ′  

 ′  

  
 
To construct a small-signal ac model at a quiescent operating point (I, V), one assumes 

that the input voltage vg(t) and the duty cycle d(t) are equal to some given quiescent values: 
 
 〈 〉  

  
 
In response, and after any transients have subsided, the converter dependent voltages 

and currents will be equal to the corresponding quiescent values, plus small ac variations: 
 
 〈 〉 ̂  
 〈 〉  
 〈 〉 ̂  
 
If the ac variations are much smaller in magnitude than the respective quiescent values. 
 
 ≪  
 ≪ | |							, | | ≪ | | 
 | ̂ | ≪ | |																				 ̂ ≪  
 
Then the nonlinear converter equations can be linearized. For the inductor equation, 

one obtains: 
 

 
̂ ′  

 
It should be noted that the complement of the duty cycle is given by: 
 

 ′ 1 1 ′ 				with	 ′ 1  

 
Multiply out and collect terms: 
 

 
̂ ′

	

 

 ′

	 	 	 	 	

 

 
The derivative of I is zero, since I is by definition a dc (constant) term. For the purposes 

of deriving a small-signal ac model, the dc terms can be considered known constant quantities. 
On the right-hand side of equation three types of terms arise: 

a) Dc terms: These terms contain dc quantities only. 
b) First-order ac terms: Each of these terms contains a single ac quantity, usually 

multiplied by a constant coefficient such as a dc term. These terms are linear 
functions of the ac variations. 

c) Second-order ac terms: These terms contain the products of ac quantities. Hence 
they are nonlinear, because they involve the multiplication of time-varying signals. 

The second-order ac terms are much smaller than the first-order terms. So we will 
neglect second-order terms. Also, dc terms on each side of equation are equal. After discarding  
second-order terms, and removing dc terms (which add to zero), we will have: 
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̂ ′  

 
 

 
Figure 8. Circuit equivalent to the small-signal ac inductor loop equation 

 
 

The capacitor equation can be linearized in a similar manner. So, we will have: 
 

 ′ ̂  

 
 

 
Figure 9. Circuit equivalent to the small-signal ac capacitor node equation 

 
 

Finally, the equation of the average input current is also linearized. 
 

 ̂ ̂  

 
By collecting terms, we obtain: 
 

 
	

̂
	 	 	

̂

	 	

̂
	 	

 

 
We again neglect the second-order nonlinear terms. The dc terms on both sides of the 

equation are equal. The remaining first-order linear ac terms are: 
 
 ̂ ̂  

 
 

 
Figure 10. Circuit equivalent to the small-signal ac input source current equation 

 
 

This is the linearized small-signal equation that describes the low-frequency ac 
components of the converter input current. 

Collecting three circuit results: 
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Figure 11. Buck- boost small-signal ac equivalent circuit 
 
 
Combination of dependent sources into effective ideal transformer, leads to the final model. 
 
 

 
Figure 12. Final Small signal ac equivalent circuit model of the buck-boost converter 

 
 

2.2. Results for Several Basic Converters 
 

 
 

Flyback 

 
 
 
3. Converter Transfer Functions 
3.1. Transfer Functions of the Buck-Boost Converter                         

The converter contains two inputs	  and  and one output, .Hence, the ac 
output voltage variations can be expressed as the superposition of terms arising from the two 
inputs:  

 
  
 

The control-to-output and line-to-output transfer functions can be defined as [5, 2], [13-14]: 
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To find the line-to-output transfer function we set the sources to zero as in Figure 13(a). 
We can then push the source and the inductor through the transformers, to obtain the circuit of 
Figure 13(b).  

 
 

 
(a) Set d sources to zero 

 
(b) push inductor and v  source through 

transformers 
 

Figure 13. Manipulation of buck-boost equivalent circuit to find the line-to-output transfer 
function Gvg (s) 

 
 
The transfer function is obtained using the voltage divider formula: 
 

 ′
′

′
′

′
′ ′

	 (11) 

 
Which is the following standard form:  
 

            (12)  

 
Derivation of the control-to-output transfer function Gvd(s)   is complicated. First, In 

small-signal model, set vg source to zero:  
 

 
 

Then, push all elements to output side of transformer: 
 

 
 

There are two d sources. One way to solve the model is to use superposition, 
expressing the output v as a sum of terms arising from the two sources. With voltage source 
only: 
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 ′

‖

′
‖

 

 
With the current source alone:  
 

 
 

 
′
‖ ‖  

 
The transfer function is the sum of above equations: 
 

 ′

‖

′ ‖ ′
‖  

 
By algebraic manipulation, we will have: 
 

 
′

′ ′

 

 
This equation is of the form: 
 

          (13) 

 
The dc gain is:   
 

 ′ ′ ′ 

 
The angular frequency of the zero is: 
 

 
′

																	  

 
And:  
 

 
′

√
	 , ′  

 
Simplified using the dc relationships: 
 

 ′ 	, ′  

 
3.2. Transfer Functions of some Basic CCM Converters 

The prominent features of the line-to-output and control-to-output transfer functions of 
the basic buck, boost, and buck-boost converters are summarized in Table 1. In each case, the 
control-to-output transfer function is of the form of Equation (13) and the line-to-output transfer 
function is of the form of Equation (12). 
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Table 1. Salient features of the small-signal CCM transfer functions of some basic dc-dc 
converters 

 
Converter 

 
Gg0

 
Gd0

  
Q 

 
 

 
buck 
 

 
D 
 

 

 

 

 
1

√
 

 

 

 

 

 
∞ 
 

 
boost 
 

 
1
′ 

 

 

′ 

 

 
′

√
 

 

 

′  

 

 
′

 

 

Buck-boost 
′ ′

 
′

√
 ′  

′

 

  
 
4. Conclusion 

We represented the ac equivalent circuit modeling and small signal transfer function for 
DC-DC converters by illustrating fundamentals governing the formulas. The objective of our ac 
modeling efforts was to predict low frequency component. To achieve this purpose, we applied 
the basic approximation of removing the high-frequency switching ripple by averaging over one 
switching period and then we derived transfer functions of DC-DC converters. 
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